岩性油气藏 ›› 2023, Vol. 35 ›› Issue (6): 147–158.doi: 10.12108/yxyqc.20230616

• 地质勘探 • 上一篇    

中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法

唐昱哲1,2, 柴辉3, 王红军1, 张良杰1, 陈鹏羽1, 张文起1, 蒋凌志1, 潘兴明2   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国石油工程技术研究院 北京石油机械有限公司, 北京 102206;
    3. 中国石油(土库曼斯坦)阿姆河天然气公司, 北京 100101
  • 收稿日期:2023-05-30 修回日期:2023-06-27 出版日期:2023-11-01 发布日期:2023-11-07
  • 第一作者:唐昱哲(1991—),男,硕士,工程师,主要从事碳酸盐岩沉积储层及地震解释相关研究工作。地址:(100083)北京市海淀区学院路20号910信箱。Email:tangyzdr@cnpc.com.cn。
  • 基金资助:
    中国石油天然气集团有限公司科技项目“海外深层油气藏机制与勘探评价技术研究”(编号:2021DJ3102)、“边底水碳酸盐岩气藏高产稳产关键技术研究”(编号:2021DJ3301)和“随钻测、录、导一体化地质导向技术研究”(编号:2021DJ4203)联合资助

Characteristics and new prediction methods of Jurassic subsalt carbonate reservoirs in the eastern right bank of Amu Darya,Central Asia

TANG Yuzhe1,2, CHAI Hui3, WANG Hongjun1, ZHANG Liangjie1, CHEN Pengyu1, ZHANG Wenqi1, JIANG Lingzhi1, PAN Xingming2   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    2. Beijing Petroleum Machinery Co., Ltd., CNPC Engineering Technology R & D Co., Ltd., Beijing 102206, China;
    3. China Amu Darya Gas Company, CNPC(Turkmenistan), Beijing 100101, China
  • Received:2023-05-30 Revised:2023-06-27 Online:2023-11-01 Published:2023-11-07

摘要: 以岩心、薄片及测井资料为基础,分析了中亚阿姆河右岸东部地区侏罗系牛津阶储层的岩性、储集空间及物性特征,利用三维地震数据,通过正演地震模拟、波形聚类技术、分频RGB融合技术以及集成学习等方法,对储层分布及厚度进行了半定量预测。研究结果表明:①阿姆河右岸东部地区侏罗系牛津阶储层岩性主要为生屑灰岩、颗粒灰岩及泥晶灰岩,为裂缝-孔洞型储层,储集空间以生物格架孔、粒内孔和裂缝为主,裂缝为后期溶蚀流体提供了通道;储层平均厚度为41.6 m,平均孔隙度为4.65%。②研究区储层多发育于XVhp层,根据其在XVhp层的分布位置可分为顶部型、底部型和两期型,顶部型储层主要分布于研究区中部及东部,底部型储层主要集中于西部,而两期型储层大量发育于西北部;研究区西部和东北部储层发育较好,厚度为45~75 m,多沿断裂发育带分布,东南部储层发育较差,厚度小于30 m,距离断层更远。③利用集成学习方法计算研究区储层厚度时,采用异质集成方法中的Stacking方法进行模型运算,以基于箱线图的离群值剔除方法剔除极端数据,以交叉验证法评估模型的预测性能,得到的储层厚度与11口实钻井储层厚度的变化趋势相符,相关系数为0.74。

关键词: 裂缝-孔洞型储层, 正演模拟, 波形聚类, 分频RGB融合, 机器学习, 盐下碳酸盐岩, 牛津阶, 侏罗系, 阿姆河右岸

Abstract: Based on core,thin section,and well logging data,the lithologies,reservoir space,and physical properties of Jurassic Oxfordian reservoir in the eastern right bank of Amu Darya in Central Asia were analyzed.3D seismic data were used to carry out semi-quantitative prediction of reservoir distribution and thickness through methods such as forward seismic modeling,waveform clustering,frequency-division RGB fusion and ensemble learning. The results show that:(1)The lithologies of Jurassic Oxfordian reservoir in the eastern right bank of Amu Darya are mainly bioclastic limestone,grainstone and micritic limestone,and the reservoirs are characterized by fractured-vuggy type. The reservoir space is dominated by biological framework pores,intragranular pores and fractures,and fractures provide a channel for later dissolution fluids. The average thickness of the reservoir is 41.6 m,and the average porosity is 4.65%.(2)The reservoirs in the study area are mostly developed in the XVhp layer,and can be divided into top-type,bottom-type,and dual-type according to their distribution position in the XVhp layer. The top-type reservoirs are mainly distributed in the central and eastern parts of the study area,the bottom-type reservoirs are concentrated in the west,while the dual-type reservoirs are extensively developed in the northwest. The reservoirs in the western and northeastern parts of the study area are well developed,with a thickness of 45-75 m,mostly distributed along fault zones. The reservoirs in the southeastern part are poorly developed,with a thickness less than 30 m,and are further away from faults.(3)When using ensemble learning method to calculate the reservoir thickness in the study area,the stacking method in the heterogeneous ensemble approach was used for model computation. Outliers were eliminated using a boxplotbased method,and the predictive performance of the models was evaluated through cross-validation. The calculated reservoir thickness showed a high degree of agreement with the thickness observed in 11 wells drilled in the study area,and the correlation coefficient is 0.74.

Key words: fractured-vuggy reservoir, forward modeling, waveform clustering, frequency-division RGB fusion, machine learning, subsalt carbonate, Oxfordian, Jurassic, right bank of Amu Darya

中图分类号: 

  • TE122.1
[1] ROEHL P O,CHOQUETTE P W. Carbonate petroleum reservoirs[M]. New York:Springer Verlag,1985:1-15.
[2] SNYDER W S,SPINOSA C,DAVYDOV V I. Petroleum geology of the southern pre-uralian foredeep with reference to the northeastern Pre-Caspian Basin[J]. International Geology Review,1994,36:452-472.
[3] MANCINI E A,BENSON D J,HART B S,et al. Appleton field case study(eastern gulf coastal plain):Field development model for Upper Jurassic Microbial reef reservoirs associated with paleotopographic basement Structures[J]. AAPG Bulletin,2000,84(11):1699-1717.
[4] 李凌,张照坤,李明隆,等.四川盆地威远—高石梯地区二叠系栖霞阶层序地层特征及有利储层分布[J].岩性油气藏,2022,34(6):32-46.LI Ling,ZHANG Zhaokun,LI Minglong,et al. Sequence stratigraphic characteristics and favorable reservoirs distribution of Permian Qixia Stage in Weiyuan-Gaoshiti area,Sichuan Basin[J]. Lithologic Reservoirs,2022,34(6):32-46.
[5] 孙夕平,张昕,李璇,等.基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J].岩性油气藏,2021,33(1):220-228.SUN Xiping,ZHANG Xin,LI Xuan,et al. Reservoir prediction for weathering and leaching zone of bedrock buried hill based on seismic pre-stack depth migration[J]. Lithologic Reservoirs,2021,33(1):220-228.
[6] 陈培元,谭秀成,杨辉廷,等.礁滩型储层层间非均质性定量表征[J].岩性油气藏,2013,25(4):27-32.CHEN Peiyuan,TAN Xiucheng,YANG Huiting,et al. Quantitative characterization of interlayer heterogeneity of reef flat reservoir[J]. Lithologic Reservoirs,2013,25(4):27-32.
[7] SADOONI F N. The nature and origin of Upper Cretaceous basin-margin rudist buildups of the Mesopotamian Basin,southern Iraq,with consideration of possible hydrocarbon stratigraphic entrapment[J]. Cretaceous Research,2005,26(2):213-224.
[8] JORDAN C F,CONNOLLY T C,VEST H A. Middle Cretaceous carbonates of the Mishrif formation,Fateh field,offshore Dubai,U.A.E[M]//ROEHL P O,CHOQUETTE P W. Carbonate petroleum reservoirs. New York:Springer,1985:425-442.
[9] AQRAWI A A M,HORBURY A D. Predicting the Mishrif reservoir quality in the Mesopotamian Basin,southern Iraq[J]. GeoArabia Manama,2008,13(1):127-128.
[10] 张良杰,王红军,蒋凌志,等.阿姆河右岸扬恰地区碳酸盐岩气田富集高产因素[J].天然气勘探与开发,2019,42(1):15-20.ZHANG Liangjie,WANG Hongjun,JIANG Lingzhi,et al. Factors influencing accumulation and high yield of carbonate-rock Gasfields,Yangui-Chashgui region,Amu Darya right bank,Turkmenistan[J]. Natural Gas Exploration and Development,2019,42(1):15-20.
[11] 王红军,张良杰,陈怀龙,等.阿姆河右岸盐下侏罗系大中型气田地质特征与分布规律[J].中国石油勘探,2020,25(4):52-64.WANG Hongjun,ZHANG Liangjie,CHEN Huailong,et al. Geological characteristics and distribution law of sub-salt Jurassic large and medium gas fields in the right bank of the Amu Darya River[J]. China Petroleum Exploration,2020,25(4):52-64.
[12] 张良杰,王红军,程木伟,等.阿姆河右岸东部侏罗系盐下断层发育特征及其对天然气富集影响[J].中国石油勘探,2022,27(2):71-83.ZHANG Liangjie,WANG Hongjun,CHENG Muwei,et al. Characteristics of subsalt Jurassic faults and the influence on natural gas enrichment in the eastern part of the right bank of Amu Darya River[J]. China Petroleum Exploration,2022,27(2):71-83.
[13] 武重阳,于炳松,王红军,等.阿姆河右岸B区中部卡洛夫—牛津阶高精度层序地层划分及层序发育模式[J].现代地质,2018,32(5):924-937.WU Chongyang,YU Bingsong,WANG Hongjun,et al. Highresolution stratigraphic division and formation model of the Callovian-Oxfordian sequences in the central part of block B in the right bank of Amu Darya Basin,Turkmenistan[J]. Geoscience,2018,32(5):924-937.
[14] 单云鹏,王红军,张良杰,等.土库曼斯坦阿姆河右岸卡洛夫—牛津阶储层流体包裹体特征及成藏期[J].东北石油大学学报,2020,44(3):14-25.SHAN Yunpeng,WANG Hongjun,ZHANG Liangjie,et al. Fluid inclusion characteristics and hydrocarbon accumulation period of Callovian-Oxfordian reservoir on the right bank of Amu Darya,Turkmenistan[J]. Journal of Northeast Petroleum University,2020,44(3):14-25.
[15] ZENG Hongliu,BACKUS M M,BARROW K T,et al. Stratal slicing,part I:Realistic 3D seismic model[J]. Geophysics,1998,63(2):502-513.
[16] ZENG Hongliu,HENRY S C,RIOLA J P. Stratal slicing,PartⅡ:Real 3D seismic data[J]. Geophysics,1998,63(2):514-522.
[17] ZENG Hongliu,HENTZ T F. High-frequency sequence stratigraphy from seismic sedimentology:Applied to Miocene,Vermilion Block 50,Tiger Shoal area,offshore Louisiana[J]. AAPG Bulletin,2004,88(2):153-174.
[18] 王强,颜雪,徐文礼,等.土库曼斯坦阿姆河盆地卡洛夫—牛津阶层序-古地理特征及演化[J].地质与勘探,2014,50(4):795-804.WANG Qiang,YAN Xue,XU Wenli,et al. Sequence-paleogeographic characteristics and evolution of Callovian-Oxfordian in Amu Darya Basin,Turkmenistan[J]. Geology and Exploration,2014,50(4):795-804.
[19] 江青春,王海,李丹,等.地震波形分类技术应用条件及其在葡北地区沉积微相研究中的应用[J].石油与天然气地质,2012,33(1):135-140.JIANG Qingchun,WANG Hai,LI Dan,et al. Application conditions of seismic waveform classification technique and its use in the study of sedimentary microfacies of Pubei area[J]. Oil&Gas Geology,2012,33(1):135-140.
[20] 谭磊,刘宏,唐昱哲,等.四川盆地龙女寺构造龙王庙组储层特征及地震响应[J].天然气地球科学,2020,31(12):1802-1813.TAN Lei,LIU Hong,TANG Yuzhe,et al. Reservoir characteristics and seismic response of Longwangmiao Formation of Longnvsi structure in Sichuan Basin[J]. Natural Gas Geoscience,2020,31(12):1802-1813.
[21] 曹俊兴,刘树根,田仁飞,等.龙门山前陆盆地深层海相碳酸盐岩储层地震预测研究[J].岩石学报,2011,27(8):2423-2434.CAO Junxing,LIU Shugen,TIAN Renfei,et al. Seismic prediction of carbonate reservoirs in the deep of Longmenshan foreland basin[J]. Acta Petrologica Sinica,2011,27(8):2423-2434.
[22] 刘爱群,陈殿远,任科英.分频与波形聚类分析技术在莺歌海盆地中深层气田区的应用[J].地球物理学进展,2013,28(1):338-344.LIU Aiqun,CHEN Dianyuan,REN Keying. Frequency decomposition and waveform cluster analysis techniques Yinggehai Basin gas field in the deep area of application[J]. Progress in Geophysics,2013,28(1):338-344.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[3] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[4] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[5] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[6] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[7] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[8] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[9] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[10] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[11] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[12] 何文渊, 陈可洋. 哈萨克斯坦南图尔盖盆地Doshan斜坡带岩性油气藏储层预测方法[J]. 岩性油气藏, 2024, 36(4): 1-11.
[13] 王同川, 陈浩如, 温龙彬, 钱玉贵, 李玉琢, 文华国. 川东五百梯地区石炭系岩溶古地貌识别及储集意义[J]. 岩性油气藏, 2024, 36(4): 109-121.
[14] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[15] 桂金咏, 李胜军, 高建虎, 刘炳杨, 郭欣. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏, 2024, 36(2): 65-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .