岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 128–136.doi: 10.12108/yxyqc.20210414

• 勘探技术 • 上一篇    下一篇

基于水气比计算的低对比度储层流体性质识别

赵军1, 韩东1, 何胜林2, 汤翟2, 张涛1   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 中海石油 (中国) 有限公司湛江分公司研究院, 广东 湛江 524057
  • 收稿日期:2020-11-07 修回日期:2021-01-28 出版日期:2021-08-01 发布日期:2021-08-06
  • 作者简介:赵军(1970-),男,博士,教授,主要从事岩石物理及其解释与评价方面的研究和教学工作。地址:(610500)四川省成都市新都区新都大道8号。Email:zhaojun_70@126.com。
  • 基金资助:
    中海石油(中国)有限公司湛江分公司科技项目“文昌9、10区低孔低渗储层测井精细评价及潜力分析”(编号:CCL2019ZJFN0823)资助

Identification of fluid properties of low contrast reservoir based on water-gas ratio calculation

ZHAO Jun1, HAN Dong1, HE Shenglin2, TANG Di2, ZHANG Tao1   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Research Institute of Zhanjiang Company, CNOOC, Zhanjiang 524057, Guangdong, China
  • Received:2020-11-07 Revised:2021-01-28 Online:2021-08-01 Published:2021-08-06

摘要: 珠江口盆地文昌A凹陷低对比度储层电性与含油气性关系复杂,气、水层测井响应特征接近,仅用常规测井识别流体性质较困难。为了准确识别该类气藏流体性质,以相渗资料、毛细管压力等实验数据为基础,通过不同含水饱和度下的相渗模型及分流率方程,建立了水气比的计算模型,结合生产动态及测试资料,建立了水气比流体的识别标准,并依据该标准确定了文昌A凹陷储层流体性质。结果表明:①计算水气比与实际生产数据符合度高,流体解释结果准确率达到92%,有效地提高了低对比度储层流体识别的准确率;②生产测试资料对该方法流体性质识别的准确性起决定作用。该方法有利于同类储层的开发。

关键词: 低对比度, 水气比, 含水饱和度, 流体识别, 测井响应, 珠江口盆地

Abstract: The electrical properties of low contrast reservoir in Wenchang A sag in the Pearl River Mouth Basin have a complicated relationship with oil and gas properties. The logging response characteristics of gas and water layers are similar,so it is difficult to identify fluid properties only by conventional logging. In order to accurately identify the fluid properties of this type of gas reservoir,based on the phase permeability data,capillary pressure and other experimental data,the calculation model of the water-gas ratio was established through the phase permeability model under different water saturations and the diversion rate equation. Combined with production and test data,the identification standard of fluid with different water-gas ratio was established,and the reservoir fluid properties of Wenchang A sag were determined according to this standard. The results show that: (1)The calculated water-gas ratio is highly consistent with the actual production data,and the accuracy of the fluid interpretation results reaches 92%,which effectively improves the accuracy of fluid identification in low-contrast reservoirs.(2)The production test data plays a decisive role in the accuracy of the fluid property identification. This method is beneficial to the development of similar reservoirs.

Key words: low contrast, water-gas ratio, water saturation, fluid identification, logging response, Pearl River Mouth Basin

中图分类号: 

  • P618.13
[1] 司兆伟, 孔祥生, 梁忠奎, 等.低对比度油气层形成机理新认识与测井解释方法研究.测井技术, 2016, 40(1):56-59. SI Z W, KONG X S, LIANG Z K, et al. New genesis analysis and log interpretation methods of low -contrast reservoir. Well Logging Technology, 2016, 40(1):56-59.
[2] 赵艳军, 鲍志东, 付晶, 等.油气成藏过程对低对比度油层形成的控制作用.地质科技情报, 2010, 29(2):71-76. ZHAO Y J, BAO Z D, FU J, et al. Control of hydrocarbon migration and accumulation processes in the low-contrast reservoir. Bulletin of Geological Science and Technology, 2010, 29(2):71-76.
[3] 陈义国, 任来义, 贺永红, 等.低对比度储层流体替换识别技术方法与应用.测井技术, 2013, 37(4):401-405. CHEN Y G, REN L Y, HE Y H, et al. Fluids replacement identification technology of low-contrast reservoir and its application. Well Logging Technology, 2013, 37(4):401-405.
[4] 崔云江, 王培春, 李瑞娟, 等.基于扩散双电层理论的低对比度油层判别新方法.测井技术, 2018, 42(3):294-299. CUI Y J, WANG P C, LI R J, et al. New method for discrimination of low contrast reservoir based on diffusion double layer theory. Well Logging Technology, 2018, 42(3):294-299.
[5] 张海涛, 郭笑锴, 杨小明, 等.姬塬地区低对比度油层成因机理与流体识别方法.测井技术, 2019, 43(5):542-549. ZHANG H T, GUO X K, YANG X M, et al. Genesis mechanism and fluid identification of low contrast reservoirs in Jiyuan area. Well Logging Technology, 2019, 43(5):542-549.
[6] 张晋言, 刘伟, 李绍霞, 等.胜利油田上古生界致密砂岩低对比度油藏测井解释模式细分技术.测井技术, 2018, 42(2):193-199. ZHANG J Y, LIU W, LI S X, et al. Well logging interpretation model subdivision technique for low contrast reservoir of tight sand reservoir of Neopaleozoic in Shengli Oilfield. Well Logging Technology, 2018, 42(2):193-199.
[7] 赵静, 冯春珍, 王艳梅, 等.核磁共振敏感参数在低对比度油层识别中的应用.测井技术, 2019, 43(3):316-322. ZHAO J, FENG C Z, WANG Y M, et al. Application of sensitive NMR parameters in oil-water identification of low-contrast reservoirs. Well Logging Technology, 2019, 43(3):316-322.
[8] 徐宁, 苏幽雅, 王碧涛, 等.靖安A地区长2低对比度油藏判识研究.石油化工应用, 2019, 38(6):96-100. XU N, SU Y Y, WANG B T, et al. Identification research of Chang 2 low contrast reservoir in Jing'an A area. Petrochemical Industry Application, 2019, 38(6):96-100.
[9] 吴健, 胡向阳, 何胜林, 等.南海西部油区低阻油层识别与定量评价.油气地质与采收率, 2014, 21(1):66-69. WU J, HU X Y, HE S L, et al. Comprehensive identification and quantitative evaluation on low resistivity reservoir in the western South China Sea. Petroleum Geology and Recovery Efficiency, 2014, 21(1):66-69.
[10] 李义, 周全, 张伟.陆丰凹陷文昌组储层流体性质识别方法研究.海洋石油, 2020, 40(1):70-73. LI Y, ZHOU Q, ZHANG W. Study on identification method of reservoir fluid properties of Wenchang Formation in Lufeng Sunken. Offshore Oil, 2020, 40(1):70-73.
[11] 段健, 朱露.南堡油田浅层低对比度油层识别方法研究.海洋石油, 2018, 38(4):62-66. DUAN J, ZHU L. Study on identification method of shallow lowcontrast reservoir in Nanpu Oilfield. Offshore Oil, 2018, 38(4):62-66.
[12] 姜平, 王珍珍, 邹明生, 等. 文昌A凹陷珠海组砂岩碳酸盐胶结物发育特征及其对储层质量的影响.地球科学, 2021, 46(2):600-620. JIANG P, WANG Z Z, ZOU M S, et al. Development characteristics of carbonate cement and its influence on reservoir quality in the sandstones from the Zhuhai Formation in the Wenchang A depression. Earth Science, 2021, 46(2):600-620.
[13] 鹿克峰, 蔡华, 王理, 等.中国东海气区初始产水评价图版的建立.天然气工业, 2019, 39(5):63-70. LU K F, CAI H, WANG L, et al. Establishment of an initial water production evaluation chart for the gas province in the East China Sea. Natural Gas Industry, 2019, 39(5):63-70.
[14] 汪周华, 王子敦, 郭平, 等.地层压力和产水对低渗透气藏气井产能的影响.地质科技情报, 2016, 35(4):133-138. WANG Z H, WANG Z D, GUO P, et al. Influence of formation pressure and producing water on productivity of gas well in lowpermeability gas reservoirs. Bulletin of Geological Science and Technology, 2016, 35(4):133-138.
[15] 李凤颖, 刘双琪, 王雯娟, 等.海相砂岩油藏水淹层精细表征技术研究与实践.重庆科技学院学报(自然科学版), 2017,19(1):9-12. LI F Y, LIU S Q, WANG W J, et al. Fine characterization technique research and practice of water flooded layer in marine sandstone reservoir. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2017, 19(1):9-12.
[16] 陈元千.相对渗透率曲线和毛管压力曲线的标准化方法.石油实验地质, 1990, 12(1):64-70. CHEN Y Q. Standardization on the curves of permeability and capillary pressure. Petroleum Geology & Experiment, 1990, 12(1):64-70.
[17] 张诗青, 戴诗华, 张晓亮, 等.核磁共振与半渗透隔板结合确定毛细管压力实验.新疆石油地质, 2010, 31(6):647-648. ZHANG S Q, DAI S H, ZHANG X L, et al. Experiment on capillary pressure determination with MNR and semi-permeable plate. Xinjiang Petroleum Geology, 2010, 31(6):647-648.
[18] SIMANDOUX P. Dielectric measurements of porous media:Application to measurement of water saturations,study of the behavior of argillaceous formations. Revue de L'Institut Francais du Petrole, 1963, 18(S1):193-215.
[19] SHEDID S A, SAAD M A. Comparison and sensitivity analysis of water saturation models in shaly sandstone reservoirs using well logging data. Journal of Petroleum Science and Engineering, 2017:536-545.
[20] 严伟, 刘帅, 冯明刚, 等.四川盆地丁山区块页岩气储层关键参数测井评价方法.岩性油气藏, 2019, 31(3):95-104. YAN W, LIU S, FENG M G, et al. Well logging evaluation methods of key parameters for shale gas reservoir in Dingshan block, Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):95-104.
[21] 陈志强, 吴思源, 白蓉, 等.基于流动单元的致密砂岩气储层渗透率测井评价:以川中广安地区须家河组为例.岩性油气藏, 2017, 29(6):76-83. CHEN Z Q, WU S Y, BAI R, et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:A case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs, 2017, 29(6):76-83.
[1] 向巧维, 李小平, 丁琳, 杜家元. 珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义[J]. 岩性油气藏, 2021, 33(2): 93-103.
[2] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[3] 罗泽, 谢明英, 梁杰, 涂志勇, 侯凯. 地震伪井速度点宏观校正方法与应用——以珠江口盆地M气田为例[J]. 岩性油气藏, 2020, 32(3): 115-121.
[4] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[5] 丁燕, 杜启振, 刘力辉, 符力耘, 冷雪梅, 刘子煊. 基于纵横波同步联合的孔隙模量三参数AVO反演方法[J]. 岩性油气藏, 2020, 32(1): 111-119.
[6] 罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣. 一套针对高泥质疏松砂岩薄储层的识别技术——以珠江口盆地X油田为例[J]. 岩性油气藏, 2019, 31(6): 95-101.
[7] 冯强汉, 阳生国, 熊哲, 高航, 张佳超, 杨懿, 杨振. 苏里格气田西部S48区气水分布特征[J]. 岩性油气藏, 2019, 31(5): 61-69.
[8] 杜贵超, 苏龙, 陈国俊, 张功成, 丁超, 曹青, 鲁岳鑫. 番禺低隆起珠海组砂岩碳酸盐胶结特征及其对储层物性的影响[J]. 岩性油气藏, 2019, 31(3): 10-19.
[9] 严伟, 刘帅, 冯明刚, 张冲, 范树平. 四川盆地丁山区块页岩气储层关键参数测井评价方法[J]. 岩性油气藏, 2019, 31(3): 95-104.
[10] 李文静, 王英民, 何敏, 陈维涛, 徐少华, 卓海腾. 珠江口盆地中中新世陆架边缘三角洲的类型及控制因素[J]. 岩性油气藏, 2018, 30(2): 58-66.
[11] 魏新善, 胡爱平, 赵会涛, 康锐, 石晓英, 刘晓鹏. 致密砂岩气地质认识新进展[J]. 岩性油气藏, 2017, 29(1): 11-20.
[12] 周游, 李治平, 景成, 谷潇雨, 孙威, 李晓. 基于“岩石物理相-流动单元”测井响应定量评价特低渗透油藏优质储层——以延长油田东部油区长6油层组为例[J]. 岩性油气藏, 2017, 29(1): 116-123.
[13] 陈锋,朱筱敏,葛家旺,黎明,吴陈冰洁. 珠江口盆地陆丰南地区文昌组层序地层及沉积体系研究[J]. 岩性油气藏, 2016, 28(4): 67-77,94.
[14] 马勇新,雷 霄,张乔良,孟令强. 低渗透油藏有效渗透率计算新模型—— — 以珠江口盆地海相低渗透砂岩为例[J]. 岩性油气藏, 2016, 28(1): 117-122.
[15] 潘光超,周家雄,韩光明,朱沛苑,刘 峰. 中深层“甜点”储层地震预测方法探讨—— 以珠江口盆地西部文昌 A 凹陷为例[J]. 岩性油气藏, 2016, 28(1): 94-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 黄籍中. 四川盆地页岩气与煤层气勘探前景分析[J]. 岩性油气藏, 2009, 21(2): 116 -120 .
[3] 龚大兴,林金辉,唐云凤,吴驰华,宋华颖. 上扬子地台北缘古生界海相烃源岩有机地球化学特征[J]. 岩性油气藏, 2010, 22(3): 31 -37 .
[4] 张旭东. 几种转换波静校正方法讨论[J]. 岩性油气藏, 2010, 22(4): 95 -99 .
[5] 李君文. 基准面旋回与储层宏观非均质性的关系———以鄂尔多斯盆地东部山2段为例[J]. 岩性油气藏, 2011, 23(3): 29 -34 .
[6] 刘小洪,冯明友,杨午阳,孙辉,魏新建,刘哲. 利用Kohonen 神经网络划分二维地震相———以柴达木盆地E区风险勘探为例[J]. 岩性油气藏, 2011, 23(4): 115 -118 .
[7] 庞军刚,卢涛,国吉安,李文厚. 鄂尔多斯盆地延长期原型湖盆恢复及中部砂体成因[J]. 岩性油气藏, 2012, 24(4): 56 -63 .
[8] 臧士宾, 郑永仙, 崔俊, 毛建英, 张小波. 砂砾岩储集层微观非均质性定量评价——以柴达木盆地昆北油田为例[J]. 岩性油气藏, 2018, 30(3): 35 -42 .
[9] 梁 宁,郑荣才,邓吉刚,蒋 欢,郭春利,高志勇. 川西北地区中二叠统栖霞组沉积相与缓斜坡模式[J]. 岩性油气藏, 2016, 28(6): 58 -67 .
[10] 邓永辉,陈开远,林易兵,常春英,黄鑫,肖鹏. 松辽盆地南部 GD 区泉四段储层孔隙成因类型及控制因素分析[J]. 岩性油气藏, 2014, 26(1): 86 -91 .