岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 141–149.doi: 10.12108/yxyqc.20220413

• 地质勘探 • 上一篇    下一篇

珠江口盆地深层高温高压下的水岩作用

李承泽1,2,3, 陈国俊1,2,3, 田兵4, 袁晓宇5, 孙瑞6, 苏龙1,2   

  1. 1. 中国科学院 西北生态环境资源研究院, 兰州 730000;
    2. 甘肃省油气资源研究重点实验室, 兰州 730000;
    3. 中国科学院大学, 北京 100049;
    4. 内蒙古科技大学, 包头 014000;
    5. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    6. 中海油研究总院, 北京 100028
  • 收稿日期:2021-08-24 修回日期:2022-03-30 出版日期:2022-07-01 发布日期:2022-07-07
  • 作者简介:李承泽(1992-),男,中国科学院大学在读博士研究生,研究方向为储层地质学。地址:(730000)甘肃省兰州市城关区东岗西路382号。Email:lichz15@lzu.edu.cn。
  • 基金资助:
    国家自然科学基金面上项目“油页岩开发利用中温室气体排放研究”(编号:41975117)资助

Water-rock interaction in deep strata under high temperature and high pressure in Pearl River Mouth Basin

LI Chengze1,2,3, CHEN Guojun1,2,3, TIAN Bing4, YUAN Xiaoyu5, SUN Rui6, SU Long1,2   

  1. 1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Key Laboratory of Petroleum Resources Research, Gansu Province, Lanzhou 730000, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Inner Mongolia University of Science and Technology, Baotou 014000, China;
    5. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    6. Research Institute of CNOOC, Beijing 100028, China
  • Received:2021-08-24 Revised:2022-03-30 Online:2022-07-01 Published:2022-07-07

摘要: 地层中的酸性流体是含油气盆地内部物质迁移和能量交换的主要介质,是形成次生孔隙、改善储层物性的重要物质基础。通过对珠江口盆地岩心样品进行高温高压水岩反应实验,结合扫描电镜、铸体薄片、储层物性、XRD及ICP-OES等分析测试手段,揭示了深层碎屑岩储层溶蚀作用和次生孔隙发育机理。研究结果表明:①高温高压条件下有机酸性流体对岩石矿物具有溶蚀作用,且发生了离子迁移现象,释放出K+,Ca2+,Na+,Mg2+等阳离子,反应后样品孔隙度平均提高了5.6%,提升幅度达31.5%,岩石中的易溶组分含量及易溶矿物的原生结构可影响次生孔隙的发育;②选取具有代表性的样品对少井或无井区域进行深部地层条件下的水岩反应模拟实验是科学有效的储层评价途径,实验可模拟溶蚀过程和刻画溶蚀机理,现今在深部油气勘探成本高、风险大的背景下,高温高压实验结果对深部储层预测和勘探目标优选具有重要参考价值。

关键词: 水岩反应, 碎屑岩储层, 有机酸性流体, 溶蚀作用, 高温高压, 深部地层, 珠江口盆地

Abstract: Acidic fluid is the main medium of material migration and energy exchange in petroliferous basins and an important material basis for forming secondary pores and improving reservoir physical properties. Through high temperature and high pressure water-rock reaction experiment on the core samples from the Pearl River Mouth Basin, combined with the analysis and test methods of scanning electron microscope,cast thin section, reservoir physical properties,XRD and ICP-OES,the dissolution of deep clastic reservoirs and the development mechanism of secondary pores were revealed. The results show that:(1)Organic acid fluid has the effect of dissolution on rocks minerals Under high temperature and high pressure, and ion migration occurs, releasing cations such as K+,Ca2+,Na+ and Mg2+. After the reaction, the porosity of the samples was increased by 5.6% on average,and the increase was 31.5%. The content of soluble components in rocks and the primary structure of soluble minerals can affect the development of secondary pores.(2)Using representative core samples to conduct experiments of deep water-rock reaction is an effective way for reservoir evaluation in areas with less well or without well. Under the current tendency of high cost and risk for oil and gas exploration,it is a meaningful way to predict and explore resources in deep reservoir. The experiment can simulate the dissolution process and characterize the dissolution mechanism. Nowadays, under the background of high cost and high risk of deep oil and gas exploration,the experiment results have important reference value for deep reservoir prediction and exploration target optimization.

Key words: water-rock interaction, clastic reservoirs, organic acid fluid, dissolution, high temperature and high pressure, deep reservoir, Pearl River Mouth Basin

中图分类号: 

  • TE122.2
[1] 彭军, 王雪龙, 韩浩东, 等.塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验[J]. 石油勘探与开发, 2018, 45(3):415- 425. PENG Jun, WANG Xuelong, HAN Haodong, et al. Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(3):415-425.
[2] MILLIKEN K L. Late diagenesis and mass transfer in sandstone-shale sequences[J]. Treatise on Geochemistry, 2003, 7:159-190.
[3] BJØRLYKKE K, JAHREN J. Open or closed geochemical systems during diagenesis in sedimentary basins:Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12):2193-2214.
[4] SCHMIDT V, MCDONALD D A. The role of secondary porosity in the course of sandstone diagenesis[J]. AAPG Bulletin, 1979, 26(8):175-207.
[5] SURDAM R C, BOESE S W, CROSSEY L J. The chemistry of secondary porosity[G]. AAPG Memoir 37, 1984:127-149.
[6] DAY-STIRRAT R J, MILLIKEN K L, DUTTON S P, et al. Open-system chemical behavior in deep Wilcox Group mudstones, Texas Gulf Coast, USA[J]. Marine and Petroleum Geology, 2010, 27(9):1804-1818.
[7] ZHU Chen, LU Peng. Alkali feldspar dissolution and secondary mineral precipitation in batch systems:3. Saturation states of product minerals and reaction paths[J]. Geochimica et Cosmochimica Acta, 2009, 73(11):3171-3200.
[8] SHI Wanzhong, XIE Yuhong, WANG Zhenfeng, et al. Characteristics of overpressure distribution and its implication for hydrocarbon exploration in the Qiongdongnan Basin[J]. Journal of Asian Earth Sciences, 2013, 66:150-165.
[9] HUANG Baojia, TIAN Hui, HUANG Hao, et al. Origin and accumulation of CO 2 and its natural displacement of oils in the continental margin basins, northern South China Sea[J]. AAPG Bulletin, 2015, 99(7):1349-1369.
[10] 季汉成, 徐珍.深部碎屑岩储层溶蚀作用实验模拟研究[J].地质学报, 2007, 81(2):212-219. JI Hancheng, XU Zhen. Experimental simulation for dissolution in clastic reservoirs of the deep zone[J]. Acta Geologica Sinica, 2007, 81(2):212-219.
[11] 杨威, 谢武仁, 俞凌杰, 等.四川盆地上三叠统须家河组致密砂岩溶蚀实验及地质意义[J]. 石油实验地质, 2021, 43(4):655-663. YANG Wei, XIE Wuren, YU Lingjie, et al. Dissolution experiments and geological implications of tight sandstones in the Xujiahe Formation of Upper Triassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(4):655-663.
[12] 郭志峰, 刘震, 王伟, 等.南海北部深水区白云凹陷地温-地压系统特征及其石油地质意义[J]. 地球科学——中国地质大学学报, 2011, 36(5):831-836. GUO Zhifeng, LIU Zhen, WANG Wei, et al. Characteristics of geotemperature-pressure systems and their implications for petroleum geology at Baiyun Depression, deep-water area of northern South China Sea[J]. Earth Science-Journal of China University of Geosciences, 2011, 36(5):831-836.
[13] 米立军, 张向涛, 庞雄, 等.珠江口盆地形成机制与油气地质[J].石油学报, 2019, 40(1):1-10. MI Lijun, ZHANG Xiangtao, PANG Xiong, et al. Formation mechanism and petroleum geology of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(1):1-10.
[14] 李弛, 罗静兰, 胡海燕, 等.热动力条件对白云凹陷深水区珠海组砂岩成岩演化过程的影响[J]. 地球科学, 2019, 44(2):572-587. LI Chi, LUO Jinglan, HU Haiyan, et al. Thermodynamic impact on deepwater sandstone diagenetic evolution of Zhuhai Formation in Baiyun Sag, Pearl River Mouth Basin[J]. Earth Science, 2019, 44(2):572-587.
[15] 田立新, 张忠涛, 庞雄, 等.白云凹陷中深层超压发育特征及油气勘探新启示[J].中国海上油气, 2020, 32(6):1-11. TIAN Lixin, ZHANG Zhongtao, PANG Xiong, et al. Characteristics of overpressure development in the mid-deep strata of Baiyun Sag and its new enlightenment in exploration activity[J]. China Offshore Oil and Gas, 2020, 32(6):1-11.
[16] 郭志峰, 刘震, 吕睿, 等.南海北部深水区白云凹陷钻前地层压力地震预测方法[J].石油地球物理勘探, 2012, 47(1):126- 132. GUO Zhifeng, LIU Zhen, LYU Rui, et al. Predrill prediction of formation pressure using seismic data in deepwater area of Baiyun Depression, northern South China Sea[J]. Oil Geophysical Prospecting, 2012, 47(1):126-132.
[17] 张强, 吕福亮, 贺晓苏, 等.南海近5年油气勘探进展与启示[J].中国石油勘探, 2018, 23(1):54-61. ZHANG Qiang, LYU Fuliang, HE Xiaosu, et al. Progress and enlightenment of oil and gas exploration in the South China Sea in recent five years[J]. China Petroleum Exploration, 2018, 23(1):54-61.
[18] 徐燕红, 杨香华, 梅廉夫.涠西南凹陷西北陡坡带流三段砂砾岩储层特征与主控因素[J]. 地球科学, 2020, 45(5):1706- 1721. XU Yanhong, YANG Xianghua, MEI Lianfu. Reservoir characteristics and main control factors of conglomerate reservoir of Els3 in the northwest steep slope zone of Weixinan Depression[J]. Earth Science, 2020, 45(5):1706-1721.
[19] 常秋红, 朱光有, 阮壮, 等.碳酸盐岩-膏盐岩组合水-岩反应热力学和动力学模型及其在塔北地区寒武系储层的应用[J].天然气地球科学, 2021, 32(10):1474-1488. CHANG Qiuhong, ZHU Guangyou, RUAN Zhuang, et al. Thermodynamics and kinetics model of fluid-rock interaction in carbonate-evaporite paragenesis and its application in Cambrian reservoir in Tabei area, Tarim Basin[J]. Natural Gas Geoscience, 2021, 32(10):1474-1488.
[20] 范明, 胡凯, 蒋小琼, 等.酸性流体对碳酸盐岩储层的改造作用[J].地球化学, 2009, 38(1):20-26. FAN Ming, HU Kai, JIANG Xiaoqiong, et al. Effect of acid fluid on carbonate reservoir reconstruction[J]. Geochimica, 2009, 38(1):20-26.
[21] 雷振宇, 解习农, 孟元林, 等.松辽盆地齐家古龙-三肇凹陷超压对成岩作用的影响[J]. 地球科学——中国地质大学学报, 2012, 37(4):833-842. LEI Zhenyu, XIE Xinong, MENG Yuanlin, et al. Effecting of overpressures on diagensis in the Qijiagulong-Sanzhao Depression of Songliao Basin[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(4):833-842.
[22] 范彩伟, 曹江骏, 罗静兰, 等.异常高压下海相重力流致密砂岩非均质性特征及其影响因素:以莺歌海盆地LD10区中新统黄流组储集层为例[J].石油勘探与开发, 2021, 48(5):903- 915. FAN Caiwei, CAO Jiangjun, LUO Jinglan, et al. Heterogeneity and influencing factors of marine gravity flow tight sandstone under abnormally high pressure:A case study from the Miocene Huangliu Formation reservoir in LD10 area, Yinggehai Basin, South China Sea[J]. Petroleum Exploration and Development, 2021, 48(5):903-915.
[23] 李伟, 刘平, 艾能平, 等.莺歌海盆地乐东地区中深层储层发育特征及成因机理[J].岩性油气藏, 2020, 32(1):19-26. LI Wei, LIU Ping, AI Nengping, et al. Development characteristics and genetic mechanism of mid-deep reservoirs in Ledong area, Yinggehai Basin[J]. Lithologic Reservoirs, 2020, 32(1):19-26.
[24] 冯炜, 杨晨, 陶善浔, 等.盐岩酸蚀裂缝表面形态特征的实验研究[J].岩性油气藏, 2020, 32(3):166-172. FENG Wei, YANG Chen, TAO Shanxun, et al. Experimental study on the surface feature of acid-etched fractures in carbonate rocks[J]. Lithologic Reservoirs, 2020, 32(3):166-172.
[25] 孙会珠, 朱玉双, 魏勇, 等.CO2驱酸化溶蚀作用对原油采收率的影响机理[J].岩性油气藏, 2020, 32(4):136-142. SUN Huizhu, ZHU Yushuang, WEI Yong, et al. Influence mechanism of acidification on oil recovery during CO2 flooding[J]. Lithologic Reservoirs, 2020, 32(4):136-142.
[26] 李佳思, 付磊, 张金龙, 等.准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6):54-66. LI Jiasi, FU Lei, ZHANG Jinlong, et al. Diagenesis and secondary pore evolution of Middle and Upper Permian clastic rocks in Wu-Xia area, Junggar Basin[J]. Lithologic Reservoirs, 2019, 31(6):54-66.
[27] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展[J].地球科学进展, 2018, 33(11):1112-1129. CHEN Qilin, HUANG Chenggang. Research progress of modification of reservoirs by dissolution in sedimentary rock[J]. Advances in Earth Science, 2018, 33(11):1112-1129.
[28] 曹正林, 袁剑英, 黄成刚, 等. 高温高压碎屑岩储层中石膏溶解对方解石沉淀的影响[J]. 石油学报, 2014, 35(3):450-454. CAO Zhenglin, YUAN Jianying, HUANG Chenggang, et al. Influence of plaster dissolution on calcite precipitation in clastic reservoirs under high-temperature and high-pressure conditions[J]. Acta Petrolei Sinica, 2014, 35(3):450-454.
[1] 柳忠泉, 曾治平, 田继军, 李艳丽, 李万安, 张文文, 张治恒. 吉木萨尔凹陷二叠系芦草沟组“甜点”成因与分布预测[J]. 岩性油气藏, 2022, 34(3): 15-28.
[2] 汪林波, 韩登林, 王晨晨, 袁瑞, 林伟, 张娟. 库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J]. 岩性油气藏, 2022, 34(3): 49-59.
[3] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[4] 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120.
[5] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[6] 向巧维, 李小平, 丁琳, 杜家元. 珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义[J]. 岩性油气藏, 2021, 33(2): 93-103.
[7] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[8] 罗泽, 谢明英, 梁杰, 涂志勇, 侯凯. 地震伪井速度点宏观校正方法与应用——以珠江口盆地M气田为例[J]. 岩性油气藏, 2020, 32(3): 115-121.
[9] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[10] 罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣. 一套针对高泥质疏松砂岩薄储层的识别技术——以珠江口盆地X油田为例[J]. 岩性油气藏, 2019, 31(6): 95-101.
[11] 杜贵超, 苏龙, 陈国俊, 张功成, 丁超, 曹青, 鲁岳鑫. 番禺低隆起珠海组砂岩碳酸盐胶结特征及其对储层物性的影响[J]. 岩性油气藏, 2019, 31(3): 10-19.
[12] 李文静, 王英民, 何敏, 陈维涛, 徐少华, 卓海腾. 珠江口盆地中中新世陆架边缘三角洲的类型及控制因素[J]. 岩性油气藏, 2018, 30(2): 58-66.
[13] 陈锋,朱筱敏,葛家旺,黎明,吴陈冰洁. 珠江口盆地陆丰南地区文昌组层序地层及沉积体系研究[J]. 岩性油气藏, 2016, 28(4): 67-77,94.
[14] 马勇新,雷 霄,张乔良,孟令强. 低渗透油藏有效渗透率计算新模型—— — 以珠江口盆地海相低渗透砂岩为例[J]. 岩性油气藏, 2016, 28(1): 117-122.
[15] 潘光超,周家雄,韩光明,朱沛苑,刘 峰. 中深层“甜点”储层地震预测方法探讨—— 以珠江口盆地西部文昌 A 凹陷为例[J]. 岩性油气藏, 2016, 28(1): 94-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!