岩性油气藏 ›› 2022, Vol. 34 ›› Issue (3): 4959.doi: 10.12108/yxyqc.20220305
汪林波1,2, 韩登林1,2, 王晨晨2,3, 袁瑞4, 林伟1,2, 张娟1,2
WANG Linbo1,2, HAN Denglin1,2, WANG Chenchen2,3, YUAN Rui4, LIN Wei1,2, ZHANG Juan1,2
摘要: 塔里木盆地库车坳陷白垩系巴什基奇克组为典型的超深层裂缝-孔隙型砂岩储层。通过岩石薄片观察和阴极发光分析对裂缝内充填的碳酸盐脉体和孔隙内赋存的碳酸盐胶结物进行了分析研究,结合微区原位元素测试等技术手段,对比分析了库车坳陷克深井区白垩系巴什基奇克组孔缝碳酸盐流体性质、期次和来源等。研究结果表明:①库车坳陷克深井区白垩系巴什基奇克组孔隙中赋存2期方解石胶结物和2期白云石胶结物;裂缝中充填2期方解石脉体和1期白云石脉体。②研究区白垩系巴什基奇克组孔隙中赋存的第Ⅱ期方解石胶结物与裂缝中充填的第Ⅰ期方解石脉体阴极发光均呈橙黄色,且具有相似的稀土配分模式(轻稀土富集,重稀土亏损,δCe弱负异常,δEu明显正异常),显示孔隙和裂缝中存在着同期同源流体,且该期流体的胶结倾向于发生在裂缝内,对裂缝周边孔隙的保存具有建设作用。
中图分类号:
[1] 孙海涛,钟大康,李勇,等.超深低孔特低渗砂岩储层的孔隙成因及控制因素:以库车坳陷克深地区巴什基奇克组为例[J].吉林大学学报(地球科学版), 2018, 48(3):693-704. SUN Haitao, ZHONG Dakang, LI Yong, et al. Porosity origin and controlling factors of ultra-deep, low porosity and ultra-low permealility sandatone reservoirs:A case study of Bashijiqike Formation in Keshen area of Kuqa Depression, Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):693-704. [2] 任大忠,张晖,周然,等.塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究[J].岩性油气藏, 2018, 30(6):27-36. REN Dazhong, ZHANG Hui, ZHOU Ran, et al. Sensitivity of tight sandstone reservoir of Bashijiqike Formation in Keshen area, Tarim Basin[J]. Lithologic Reservoirs, 2018, 30(6):27-36. [3] 张惠良,张荣虎,杨海军,等.超深层裂缝-孔隙型致密砂岩储集层表征与评价:以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发, 2014, 41(2):158-167. ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:A case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2):158-167. [4] 杨海军,张荣虎,杨宪彰,等.超深层致密砂岩构造裂缝特征及其对储层的改造作用:以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学, 2018, 29(7):942-950. YANG Haijun, ZHANG Ronghu, YANG Xianzhang, et al. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir:A case study of Keshen Gasfield, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(7):942-950. [5] 丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展, 2015, 30(7):737-750. DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7):737-750. [6] 姜振学,李峰,杨海军,等.库车坳陷迪北地区侏罗系致密储层裂缝发育特征及控藏模式[J].石油学报, 2015, 36(增刊2):102-111. JIANG Zhenxue, LI Feng, YANG Haijun, et al. Development characteristics of fractures in Jurassic tight reservoir in Dibei area of Kuqa Depression and its reservoir-controlling mode[J]. Acta Petrolei Sinica, 2015, 36(Suppl 2):102-111. [7] 袁静,李欣尧,李际,等.库车坳陷迪那2气田古近系砂岩储层孔隙构造-成岩演化[J].地质学报, 2017, 91(9):2065-2078. YUAN Jing, LI Xinyao, LI Ji, et al. Tectonic-diagenetic evolution of Paleocene tight sandstone reservoir pores in the DN2 gas field of Kuqa Depression[J]. Acta Geologica Sinica, 2017, 91(9):2065-2078. [8] 李忠.盆地深层流体-岩石作用与油气形成研究前沿[J].矿物岩石地球化学通报, 2016, 35(5):807-816. LI Zhong. Research frontiers of fluid-rock interaction and oil-gas formation in deep-buried Basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5):807-816. [9] 李忠,罗威,曾冰艳,等.盆地多尺度构造驱动的流体-岩石作用及成储效应[J].地球科学, 2018, 43(10):3498-3510. LI Zhong, LUO Wei, ZENG Bingyan, et al. Fluid-rock interactions and reservoir formation driven by multiscale structural deformation in basin evolution[J]. Earth Science, 2018, 43(10):3498-3510. [10] 杨海军,李勇,唐雁刚,等.塔里木盆地克深气田成藏条件及勘探开发关键技术[J].石油学报, 2021, 42(3):399-414. YANG Haijun, LI Yong, TANG Yangang, et al. Accumulation conditions, key exploration and development technologies for Keshen gas field in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(3):399-414. [11] 王珂,张荣虎,王俊鹏,等.超深层致密砂岩储层构造裂缝分布特征及其成因:以塔里木盆地库车前陆冲断带克深气田为例[J].石油与天然气地质, 2021, 42(2):338-353. WANG Ke, ZHANG Ronghu, WANG Junpeng, et al. Distribution and origin of fractures in ultra-deep tight sandstone reservoirs:A case study of Keshen gas field,Kuqa foreland thrust belt, Tarim Basin[J]. Oil&Gas Geology, 2021, 42(2):338-353. [12] STEEFEL C L, LICHTNER P. Multicomponent reactive transport in discrete fractures Ⅱ:Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site[J]. Journal of Hydrology, 1998, 209(1/2/3/4):200-224. [13] 熊鹰,谭秀成,伍坤宇,等.碳酸盐岩储集层成岩作用中"孔隙尺寸控制沉淀"研究进展、地质意义及鄂尔多斯盆地实例[J].古地理学报, 2020, 22(4):744-760. XIONG Ying, TAN Xiucheng, WU Kunyu, et al. Research advances, geological implication and application in Ordos Basin of the"pore-size controlled precipitation "in diagenesis of carbonate rock reservoir[J]. Journal of Palaeogaography (Chinese Edition), 2020, 22(4):744-760. [14] 王珂,杨海军,张惠良,等.超深层致密砂岩储层构造裂缝特征与有效性:以塔里木盆地库车坳陷克深8气藏为例[J].石油与天然气地质, 2018, 39(4):719-729. WANG Ke, YANG Haijun, ZHANG Huiliang, et al. Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:A case study of Keshen-8 gas pool in Kuqa Depression, Tarim Basin[J]. Oil&Gas Geology, 2018, 39(4):719-729. [15] 巩磊,曾联波,杜宜静,等.构造成岩作用对裂缝有效性的影响:以库车前陆盆地白垩系致密砂岩储层为例[J].中国矿业大学学报, 2015, 44(3):514-519. GONG Lei, ZENG Lianbo, DU Yijing, et al. Influences of structural diagenesis on fracture effectiveness:A case study of the Cretaceous tight sandstone reservoirs of Luqa foreland basin[J]. Journal of China University of Mining&Technology, 2015, 44(3):514-519. [16] 刘云龙.库车前陆冲断带白垩系储层胶结作用及对孔隙演化的影响[D].北京:中国石油大学(北京), 2016. LIU Yunlong. The cementation and impact on the porosity evolution of Cretaceous reservoir in Kuqa foreland thrust belt[D]. Beijing:China University of Petroleum (Beijing), 2016. [17] 罗威,倪玲梅.致密砂岩有效储层形成演化的主控因素:以库车坳陷巴什基奇克组砂岩储层为例[J].断块油气田, 2020, 27(1):7-12. LUO Wei, NI Lingmei. Main controlling factors of formation and evolution of effective reservoir in tight sandstone:Taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an example[J]. Fault-Block Oil&Gas Field, 2020, 27(1):7-12. [18] 刘芬,朱筱敏,潘荣,等.低渗透储层形成及库车坳陷实例分析[J].岩性油气藏, 2014, 26(3):28-37. LIU Fen, ZHU Xiaomin, PAN Rong, et al. Formation of low permeability reservoir and typical case analysis in Kuqa Depression[J]. Lithologic Reservoirs, 2014, 26(3):28-37. [19] 王华超,韩登林,欧阳传湘,等.库车坳陷北部阿合组致密砂岩储层特征及主控因素[J].岩性油气藏, 2019, 31(2):115-123. WANG Huachao, HAN Denglin, OUYANG Chuanxiang, et al. Characteristics and main controlling factors of tight sandstone reservoir of Ahe Formation in northern Kuqa Depression[J]. Lithologic Reservoirs, 2019, 31(2):115-123. [20] 袁纯,张惠良,王波.大型辫状河三角洲砂体构型与储层特征:以库车坳陷北部阿合组为例[J].岩性油气藏, 2020, 32(6):73-84. YUAN Chun, ZHNAG Huiliang, WANG Bo. Sand body configuration and reservoir characteristics of large braided river delta:A case study of Ahe Formation in northern Kuqa Depression, Tarim Basin[J]. Lithologic Reservoirs, 2020, 32(6):73-84. [21] 王珂,杨海军,李勇,等.库车坳陷克深气田致密砂岩储层构造裂缝形成序列与分布规律[J].大地构造与成矿学, 2020, 44(1):30-46. WANG Ke, YANG Haijun, LI Yong, et al. Formation sequence and distribution of structural fractures in compact sandstone reservoir of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Geotectonica et Metallogenia, 2020, 44(1):30-46. [22] 张荣虎,杨海军,王俊鹏,等.库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义[J].石油学报, 2014, 35(6):1057-1069. ZHANG Ronghu, YANG Haijun, WANG Junpeng, et al. The formation mechanism and exploration significance of ultra-deep, low-permeability and tight sandstone reservoirs in Kuqa Depression, Tarim Basin[J]. Acta Petrolei Sinica, 2014, 35(6):1057-1069. [23] 王代富,罗静兰,陈淑慧,等.珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨[J].地质学报, 2017, 91(9):2079-2090. WANG Daifu, LUO Jinglan, CHEN Shuhui, et al. Carbonate cementation and origin analysis of deep sandstone reservoirs in the Baiyun Sag, Pearl River Mouth Basin[J]. Acta Geologica Sinica, 2017, 91(9):2079-2090. [24] 能源,李勇,谢会文,等.库车前陆盆地盐下冲断带构造变换特征[J].新疆石油地质, 2019, 40(1):54-60. NENG Yuan, LI Yong, XIE Huiwen, et al. Tectonic transformation characteristics of subsalt thrust belts in Kuqa foreland basin[J]. Xinjiang Petroleum Geology, 2019, 40(1):54-60. [25] 杨克基,漆家福,马宝军,等.库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析[J].大地构造与成矿学, 2018, 42(2):211-224. YANG Keji, QI Jiafu, MA Baojun, et al. Differential tectonic deformation of subsalt and suprasalt strata in Kuqa Depression and their controlling factors[J]. Geotectonica et Metallogenia, 2018, 42(2):211-224. [26] 曾庆鲁,张荣虎,张亮,等.塔里木盆地西南坳陷下白垩统沉积相与储集层差异演化特征[J].天然气地球科学, 2020, 31(10):1375-1388. ZENG Qinglu, ZHANG Ronghu, ZHANG Liang, et al. Sedimentary facies and reservoir evolution divergence of early Cretaceous sandstones in southwest depression of Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(10):1375-1388. [27] HU Zhaochu, ZHANG Wen, LIU Yongsheng, et al. A novel "wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2):1152-1157. [28] 林治家,陈多福,刘芊.海相沉积氧化还原环境的地球化学识别指标[J].矿物岩石地球化学通报, 2008, 27(1):72-80. LIN Zhijia, CHEN Duofu, LIU Qian. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1):72-80. [29] JAMES R F, ALEDEN B C, THOMAS W O. Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (Upper Cambrian), southeast Missouri[J]. Journal of Sedimentary Petrology, 1982, 52(2):631-638. [30] 黄思静,卿海若,胡作维,等.川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用[J].地球科学——中国地质大学学报, 2008, 33(1):26-34. HUANG Sijing, QING Hairuo, HU Zuowei, et al. Cathodoluminescence and diagenesis of the carbonate rocks in Feixianguan Formation of Triassic, eastern Sichuan Basin of China[J]. Earth Science-Journal of China University of Geosciences, 2008, 33(1):26-34. [31] MICHAEL B. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93(34):219-230. [32] LOTTERMOSE B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 1992, 7(1):25-41. [33] 郭小文,陈家旭,袁圣强,等.含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束:以渤海湾盆地东营凹陷为例[J].石油学报, 2020, 41(3):284-291. GUO Xiaowen, CHEN Jiaxu, YUAN Shengqiang, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins:A case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(3):284-291. [34] 赵彦彦,李三忠,李达,等.碳酸盐(岩)的稀土元素特征及其古环境指示意义[J].大地构造与成矿学, 2019, 43(1):141-167. ZHAO Yanyan, LI Sanzhong, LI Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1):141-167. [35] 毛亚昆,钟大康,能源,等.库车前陆冲断带白垩系储层流体包裹体特征与油气成藏[J].中国矿业大学学报, 2015, 44(6):1033-1042. MAO Yakun, ZHONG Dakang, NENG Yuan, et al. Fluid inclusion characteristics and hydrocarbons accumulation of the Cretaceous reservoirs in Kuqa foreland thrust belt, Tarim Basin, northwest China[J]. Journal of China University of Mining&Technology, 2015, 44(6):1033-1042. [36] 毛亚昆.库车坳陷前陆冲断带下白垩统砂岩储层孔隙演化模式[D].北京:中国石油大学(北京), 2019. MAO Yakun. Pore evolution model of lower cretaceous sandstone reservoir in foreland thrust belt of Kuqa Depression[D]. Beijing:China University of Petroleum (Beijing), 2019. [37] 李玲,唐洪明,王茜,等.克拉苏冲断带克深区带白垩系超深储集层成岩演化[J].新疆石油地质, 2017, 38(1):7-14. LI Ling, TANG Hongming, WANG Xi, et al. Diagenetic evolution of Cretaceous ultra-deep reservoir in Keshen belt, Kelasu thrust belt, Kuqa Depression[J]. Xinjiang Petroleum Geology, 2017, 38(1):7-14. [38] LI Ling, TANG Hongming, WANG Xi, et al. Evolution of diagenetic fluid of ultra-deep Cretaceous Bashijiqike Formation in Kuqa Depression[J]. Journal of Central South University, 2018, 25(10):2472-2495. [39] 孙可欣,李贤庆,魏强,等.库车坳陷克深大气田白垩系致密砂岩储层古流体地球化学特征研究[J].现代地质, 2019, 33(6):1220-1228. SUN Kexin, LI Xianqing, WEI Qiang, et al. Geochemical characteristics of paleo-fluid in tight sandstone from Cretaceous reservoir in Keshen large gas field, Kuqa Depression[J]. Geoscience, 2019, 33(6):1220-1228. [40] 张月,韩登林,杨铖晔,等.超深层碎屑岩储层裂缝充填流体迁移规律:以库车坳陷克深井区白垩系巴什基奇克组为例[J].石油学报, 2020, 41(3):292-300. ZHANG Yue, HAN Denglin, YANG Chengye, et al. Migration law of fracture filling fluid in ultra-deep clastic reservoirs:A case study of the Cretaceous Bashijiqike Formation in Keshen well block, Kuqa Depression[J]. Acta Petrolei Sinica, 2020, 41(3):292-300. |
[1] | 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76. |
[2] | 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134. |
[3] | 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148. |
[4] | 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121. |
[5] | 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14. |
[6] | 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24. |
[7] | 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45. |
[8] | 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97. |
[9] | 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158. |
[10] | 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177. |
[11] | 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43. |
[12] | 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34. |
[13] | 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145. |
[14] | 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18. |
[15] | 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179. |
|