岩性油气藏 ›› 2022, Vol. 34 ›› Issue (3): 6069.doi: 10.12108/yxyqc.20220306
何玉, 周星, 李少轩, 丁洪波
HE Yu, ZHOU Xing, LI Shaoxuan, DING Hongbo
摘要: 通过渤海湾盆地渤中凹陷古近系的测压、测井数据建立全井段地层压力曲线,划分其垂向超压带,并根据垂直有效应力-速度交会图、烃源岩发育层段及镜质体反射率分析了超压成因和类型,完善了超压成因的识别方法。研究结果表明:①渤中凹陷古近系东二下段至沙三段均发育异常超压,超压成因主要为欠压实、有机质生烃、流体传导,随着地层年代变老,超压成因由欠压实向有机质生烃、流体传导等非欠压实成因变化。②欠压实超压多发生在厚泥岩段,声波速度变化小,岩石密度较小,垂直有效应力稳定;有机质生烃超压层段的声波速度低于正常压实地层的速度,但随深度增加略有增大,垂直有效应力较小;流体传导超压一般发生于不具备自源型超压生成条件的流体封存箱,声波速度及岩石密度均为正常压实趋势,实测压力纵向上随深度线性增加,表现为同一压力系统。
中图分类号:
[1] 马启富,陈斯忠,张启明,等.超压盆地与油气分布[M].北京:地质出版社, 2000:1-24. MA Qifu, CHEN Sizhong, ZHANG Qiming, et al. Oil and gas distribution in overpressured basins[M]. Beijing:Geological Publishing House, 2000:1-24. [2] 朱伟林,米立军.中国海域含油气盆地图集[M].北京:石油工业出版社, 2010:24-25. ZHU Weilin, MI Lijun. Atlas of oil and gas basin, China sea[M]. Beijing:Petroleum Industry Press, 2010:24-25. [3] 沈章洪.渤海油田古近系超压成因分类及分布特征[J].中国海上油气, 2016, 28(3):31-36. SHEN Zhanghong. Genetic classification and distribution characteristics of overpressure in the Paleogene of Bohai oilfields[J]. China Offshore Oil and Gas, 2016, 28(3):31-36. [4] 石良,金振奎,闫伟,等.异常高压对储集层压实和胶结作用的影响:以渤海湾盆地渤中凹陷西北次凹为例[J].石油勘探与开发, 2015, 42(3):310-318. SHI Liang, JIN Zhenkui, YAN Wei, et al. Influence of overpressure on reservoir compaction and cementation:A case from northwestern sub sag, Bozhong Sag,Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2015, 42(3):310-318. [5] 郝芳,蔡东升,邹华耀,等.渤中坳陷超压-构造活动联控型流体流动与油气快速成藏[J].地球科学——中国地质大学学报, 2004, 29(5):518-524. HAO Fang, CAI Dongsheng, ZOU Huayao, et al. Overpressuretectonic activity controlled fluid flow and rapid petroleum accumulation in Bozhong Depression,Bohai Bay Basin[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(5):518-524. [6] PETER V R, RICHARD H, PETER T. The origin of overpressure in the Carnarvon Basin, western Australia:Implications for pore pressure prediction[J]. Petroleum Geoscience,2004,10(3):247-257. [7] TANG Longxiang, LU Jungang, YANG Mingyi, et al. Identification of overpressures resulting from undercompaction and hydrocarbon generation in shale-dominated settings using well-log data[J]. Interpretation, 2022, 2:141-148. [8] WEBSTER M. Overpressures in the Taranaki Basin:Distribution, causes and implications for exploration[J]. AAPG Bulletin, 2011, 95(3):339-370. [9] LUO Xiaorong, WANG Zhaoming, LIU Luojun. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 2007, 95(10):1123-1139. [10] VERNIK L,DE NEWTON P V. Pore pressure prediction in organic shales[J].The Leading Edge, 2022, 3:172-175. [11] 杜晓峰,王清斌,庞小军,等.渤中凹陷石南陡坡带东三段源汇体系定量表征[J].岩性油气藏, 2018, 30(5):1-10. DU Xiaofeng, WANG Qingbin, PANG Xiaojun, et al. Quantitative characterization of source-sink system of Ed3 in Shinan steep slope zone,Bozhong Depression[J]. Lithologic Reservoirs, 2018, 30(5):1-10. [12] 王洪亮,邓宏文.渤海湾盆地第三系层序地层特征与大中型气田分布[J].中国海上油气(地质), 2000, 14(2):100-103. WANG Hongliang, DENG Hongwen. Tertiary sequence stratigraphy and major gas fields in Bohai Bay Basin[J]. China Offshore Oil and Gas (Geology), 2000, 14(2):100-103. [13] 杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘, 1995, 2(4):137-148. DU Xu, ZHENG Hongyin, JIAO Xiuqiong. Abnormal pressure and hydrocarbon accumulation[J]. Earth Science Frontiers, 1995, 2(4):137-148. [14] 罗晓容,杨计海,王振峰.盆地内渗透性地层超压形成机制及钻前压力预测[J].地质论评, 2000, 46(1):22-30. LUO Xiaorong, YANG Jihai, WANG Zhenfeng. The overpressuring mechanisms in aquifers and pressure prediction in Basins[J]. Geological Review, 2000, 46(1):22-30. [15] 郭小文,何生,宋国奇,等.东营凹陷生油增压成因证据[J].地球科学——中国地质大学学报, 2011, 36(6):1085-1094. GUO Xiaowen, HE Sheng, SONG Guoqi, et al. Evidences of overpressure caused by oil generation in Dongying Depression[J]. Earth Science-Journal of China University of Geosciences, 2011, 36(6):1085-1094. [16] 刘晓峰.超压传递:概念和方式[J].石油实验地质, 2002, 24(6):533-536. LIU Xiaofeng. Overpressure transference:Concept and ways[J]. Petroleum Geology&Experiment, 2002, 24(6):533-536. [17] 刘晓峰,解习农.储层超压流体系统的成因机制[J].地质科技情报, 2003, 22(3):55-60. LIU Xiaofeng, XIE Xinong. Review on formation mechanism of the reservoir overpressure fluid system[J]. Geological Science and Technology Information, 2003, 22(3):55-60. [18] TINGAY M R P. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei[J]. AAPG Bulletin, 2009, 93(1):51-74. [19] RAMDHAN A M, GOULTY N R. Overpressure-generating mechanisms in the Peciko Field, Lower Kutai Basin, Indonesia[J]. Petroleum Geoscience, 2010, 16(4):367-376. [20] 王志宏,郝翠果,李建明,等.川西前陆盆地超压分布及成因机制[J].岩性油气藏, 2019, 31(6):36-43. WANG Zhihong, HAO Cuiguo, LI Jianming, et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs, 2019, 31(6):36-43. [21] TERZAGHI K. Die Berechnung der Durchlässigkeit des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen[J]. Akademie der Wissenschaften in Wien, 1923, 132(3/4):125-138. [22] BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[R]. Dallas:Proceedings of The IADC/SPE Drilling Conference, 1994. [23] BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2):174-177. [24] 薛永安,王飞龙,汤国民,等.渤海海域页岩油气地质条件与勘探前景[J].石油与天然气地质, 2020, 41(4):696-709. XUE Yong'an, WANG Feilong, TANG Guomin, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil&Gas Geology, 2020, 41(4):696-709. [25] 谢玉洪,张功成,沈朴,等.渤海湾盆地渤中凹陷大气田形成条件与勘探方向[J].石油学报, 2018, 39(11):1199-1210. XIE Yuhong, ZHANG Gongcheng, SHEN Pu, et al. Formation conditions and exploration direction of large gas field in Bozhong Sag of Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(11):1199-1210. [26] 姜雪,刘丽芳,孙和风,等.气候与构造控制下湖相优质烃源岩的差异分布:以渤中凹陷为例[J].石油学报, 2019, 40(2):165-175. JIANG Xue, LIU Lifang, SUN Hefeng, et al. Differential distribution of high quality lacustrine source rocks controlled by climate and tectonics:A case study from Bozhong Sag[J]. Acta Petrolei Sinica, 2019, 40(2):165-175. [27] 庞小军,代黎明,王清斌,等.渤中凹陷西北缘东三段低渗透储层特征及控制因素[J].岩性油气藏, 2017, 29(5):76-88. PANG Xiaojun, DAI Liming, WANG Qingbin, et al. Characteristics and controlling factors of low permeability reservoirs of the third member of Dongying Formation in northwestern margin of Bozhong Sag[J]. Lithologic Reservoirs, 2017, 29(5):76-88. [28] 吴磊,徐怀民,季汉成.渤海湾盆地渤中凹陷古近系沉积体系演化及物源分析[J].海洋地质与第四纪地质, 2006, 26(1):81-87. WU Lei, XU Huaimin, JI Hancheng. Evolution of sedimentary system and analysis of sedimentary source in Paleogene of Bozhong Sag, Bohai Bay[J]. Marine Geology&Quaternary Geology, 2006, 26(1):81-87. [29] 杜雨佳.渤中凹陷古近系烃源岩生烃潜力评价[D].青岛:中国石油大学(华东), 2015. DU Yujia. Hydrocarbon generation potential of Paleogene source rocks in Bozhong Depression[D]. Qingdao:China University of Petroleum (East China), 2015. [30] 刘晓峰,解习农,张成.渤海湾盆地渤中坳陷储层超压特征与成因机制[J].地球科学——中国地质大学学报, 2008, 33(3):337-341. LIU Xiaofeng, XIE Xinong, ZHANG Cheng. Characteristics and generation of the reservoir overpressure in Bozhong Depression, Bohai Bay Basin[J]. Earth Science-Journal of China University of Geosciences, 2008, 33(3):337-341. [31] 蒋有录,王鑫,于倩倩,等.渤海湾盆地含油气凹陷压力场特征及与油气富集关系[J].石油学报, 2016, 37(11):1361-1369. JIANG Youlu, WANG Xin, YU Qianqian, et al. Pressure field characteristics of petroliferous depressions and its relationship with hydrocarbon enrichment in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2016, 37(11):1361-1369. [32] 樊建华,李瑞娟,赵清平.基于地震的地层压力预测在渤中凹陷西南地区的应用[J].工程地球物理学报, 2015, 12(5):571-575. FAN Jianhua, LI Ruijuan, ZHAO Qingping. The application of seismic formation pressure prediction to southwest area of Bozhong Depression[J]. Chinese Journal of Engineering Geophysics, 2015, 12(5):571-575. [33] 王德英,于娅,张藜,等.渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J].岩性油气藏, 2020, 32(1):1-10. WANG Deying, YU Ya, ZHANG Li, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea[J]. Lithologic Reservoirs, 2020, 32(1):1-10. |
[1] | 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177. |
[2] | 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55. |
[3] | 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86. |
[4] | 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70. |
[5] | 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157. |
[6] | 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136. |
[7] | 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95. |
[8] | 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30. |
[9] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[10] | 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169. |
[11] | 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42. |
[12] | 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61. |
[13] | 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99. |
[14] | 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60. |
[15] | 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39. |
|