岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 111120.doi: 10.12108/yxyqc.20210412
马乔雨1, 张欣2, 张春雷3, 周恒1, 武中原1
MA Qiaoyu1, ZHANG Xin2, ZHANG Chunlei3, ZHOU Heng1, WU Zhongyuan1
摘要: 纵横波速度是地球物理勘探中识别储层岩性、物性和储层等目标极其重要的信息,由于采集技术与成本投入的限制,横波速度资料通常较为缺乏,横波速度预测便成为岩石物理分析中亟需解决的重要问题。传统上基于理论方法和经验公式的横波速度转换方法局限性较大,常规的点对点的机器学习方法无法有效表达测井参数的空间特征,对横波速度与其它测井参数之间的内在关系的表征不够充分。为此,开展了基于一维卷积神经网络(1D-CNN)模型的横波速度预测方法研究,基于声波时差、密度、自然伽马和电阻率等16种测井参数建立深度学习回归模型,通过不同尺度卷积提取测井参数在测井深度空间上的结构性特征,并采用多层网络结构,学习横波参数与测井参数深度特征之间的关系,从而建立更为精确的预测模型。通过在苏里格气田上古生界碎屑岩储层的实际应用,验证了一维卷积神经网络模型的横波速度预测精度较高,且具有良好的泛化性。
中图分类号:
[1] 谢冰, 白利, 赵艾琳, 等. Sonic Scanner声波扫描测井在碳酸盐岩储层裂缝有效性评价中的应用:以四川盆地震旦系为例. 岩性油气藏,2017, 29(4):117-123. XIE B, BAI L, ZHAO A L, et al. Application of sonic scanner logging to fracture effectiveness evaluation of carbonate reservoir:A case from Sinian in Sichuan Basin. Lithologic Reservoirs, 2017, 29(4):117-123. [2] 丁燕, 杜启振, 刘力辉, 等.基于纵横波同步联合的孔隙模量三参数AVO反演方法.岩性油气藏, 2020, 32(1):111-119. DING Y, DU Q Z, LIU L H, et al. Three-parameter AVO inversion method of pore modulus based on PP and PS wave simultaneous joint inversion. Lithologic Reservoirs, 2020, 32(1):111-119. [3] 张艳, 高世臣, 孟婉莹等.致密砂岩储层AVO正演模拟过程中的不确定性分析.岩性油气藏, 2020, 32(6):120-128. ZHANG Y, GAO S C, MENG W Y, et al. Uncertainty analysis in AVO forward modeling for tight sandstone reservoirs simultaneous joint inversion. Lithologic Reservoirs, 2020, 32(6):120-128. [4] CASTAGNA J P, BATZLE M L, KAN T K, et al. Offset-dependent reflectivity-theory and practice of AVO analysis Investigations in Geophysics, 1993, 8:135-171. [5] RØGEN B, GOMMESEN L, FABRICIUS I L. Methods of velocity prediction tested for North Sea chalk:A review of fluid substitution and S estimates. Journal of Petroleum Science & Engineering, 2004,45(1-2):129-139. [6] BERRYMAN J G. Poroelastic shear modulus dependence on pore-fluid properties arising in a model of thin isotropic layers. Geophysical Journal International, 2004, 157(1):415-425. [7] CASTAGNA J P, BATZLE M L, EASTWOOD R L. Relationships between compressional-wave and shear wave velocities in clastic silicate rocks. Geophysics, 1985, 50:571-581. [8] MA X H, YANG Y, WEN L, et al. Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin, SW China. Petroleum Exploration and Development, 2019, 46(1):1-13. [9] LI Y, KANG Z J, XUE Z J, et al. Theories and practices of carbonate reservoirs development in China. Petroleum Exploration and Development, 2018, 45(4):669-678. [10] 张录录. 典型油气藏岩石物理特征分析及应用研究. 青岛:中国石油大学(华东), 2013. ZHANG L L. Analysis of rock physics characteristics of typical reservoir and applied research. Qingdao:China University of Petroleum (East China), 2013. [11] XU J, TAN M, WANG X, et al. Predicting acoustic-wave velocities and fluid sensitivity to elastic properties in fractured carbonate formation. Interpretation, 2017, 5(1):SB69-SB80. [12] ZHANG Y, ZHONG H R, WU Z Y, et al. Improvement of petrophysical workflow for shear wave velocity prediction based on machine learning methods for complex carbonate reservoirs. Journal of Petroleum Science and Engineering, 2020, 192:107234. [13] 张炜, 唐宇, 余迎. 机器学习在地球物理测井中的应用进展. 测井技术, 2020(2):185. ZHANG W, TANG Y, YU Y. Application progress of machine learning in geophysical logging. Well Logging Technology, 2020(2):185. [14] 江凯, 王守东, 胡永静, 等. 基于Boosting Tree算法的测井岩性识别模型. 测井技术, 2018, 42(4):395-400. JIANG K, WANG S D, HU Y J, et al. Lithology identification model by well logging based on boosting tree algorithm. Well Logging Technology, 2018, 42(4):395-400. [15] CHEN T Q, GUESTRIN C. XGBoost:A scalable tree boosting system. Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining. San Francisco, 2016:785-794. [16] 孙予舒, 黄芸, 梁婷, 等. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别. 岩性油气藏, 2020, 32(4):98-106. SUN Y S, HUANG Y, LIANG T, et al. Identification of complex carbonate lithology by logging based on XGBoost algorithm. Lithologic Reservoirs,2020,32(4):98-106. [17] 倪维军, 李琪, 郭文惠, 等. 基于支持向量机的页岩储层横波速度预测. 西安石油大学学报(自然科学版), 2017, 32(4):46-49. NI W J, LI Q, GUO W H, et al. Prediction of shear wave velocity in shale reservoir based on support vector machine. Journal of Xi'an Shiyou University(Natural Science), 2017, 32(4):46-49. [18] HINTON G E, SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507. [19] 赵军龙, 李纲, 麻平社, 等. 神经网络在石油测井解释中的应用综述. 地球物理学进展, 2010, 25(5):1744-1751. ZHAO J L, LI G, MA P S, et al. The application of network technology to petroleum logging interpretation. Progress in Geophysics(in Chinese), 2010, 25(5):1744-1751. [20] ESKANDARI H, REZAEE M, MOHAMMADNIA M. Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir, South-West Iran.CSEG Recorder, 2004, 29(7):40-48. [21] 孙宇航, 刘洋. 利用GRU神经网络预测横波速度. 石油地球物理勘探, 2020, 55(3):484-492. SUN Y H, LIU Y.Prediction of S-wave velocity based on GRU neural network. Oil Geophysical Prospecting, 2020, 55(3):484-492. [22] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3):293-300. [23] GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep learning. Massachusetts Institute of Technology Press, Cambridge, 2016. |
[1] | 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35. |
[2] | 桂金咏, 李胜军, 高建虎, 刘炳杨, 郭欣. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏, 2024, 36(2): 65-75. |
[3] | 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135. |
[4] | 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146. |
[5] | 杨午阳, 魏新建, 李海山. 智能物探技术的过去、现在与未来[J]. 岩性油气藏, 2024, 36(2): 170-188. |
[6] | 徐壮, 石万忠, 王任, 骆福嵩, 夏永涛, 覃硕, 张晓. 塔北隆起西部地区白垩系碎屑岩油气成藏规律及成藏模式[J]. 岩性油气藏, 2023, 35(2): 31-46. |
[7] | 李承泽, 陈国俊, 田兵, 袁晓宇, 孙瑞, 苏龙. 珠江口盆地深层高温高压下的水岩作用[J]. 岩性油气藏, 2022, 34(4): 141-149. |
[8] | 汪林波, 韩登林, 王晨晨, 袁瑞, 林伟, 张娟. 库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J]. 岩性油气藏, 2022, 34(3): 49-59. |
[9] | 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84. |
[10] | 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69. |
[11] | 侯科锋, 李进步, 张吉, 王龙, 田敏. 苏里格致密砂岩气藏未动用储量评价及开发对策[J]. 岩性油气藏, 2020, 32(4): 115-125. |
[12] | 田清华, 刘俊, 张晨, 王文胜, 黄丹. 苏里格气田下古生界储层特征及主控因素[J]. 岩性油气藏, 2020, 32(2): 33-42. |
[13] | 柳娜, 周兆华, 任大忠, 南珺祥, 刘登科, 杜堃. 致密砂岩气藏可动流体分布特征及其控制因素——以苏里格气田西区盒8段与山1段为例[J]. 岩性油气藏, 2019, 31(6): 14-25. |
[14] | 冯强汉, 阳生国, 熊哲, 高航, 张佳超, 杨懿, 杨振. 苏里格气田西部S48区气水分布特征[J]. 岩性油气藏, 2019, 31(5): 61-69. |
[15] | 刘跃杰, 刘书强, 马强, 姚宗森, 佘家朝. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用[J]. 岩性油气藏, 2019, 31(4): 101-111. |
|