岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 31–46.doi: 10.12108/yxyqc.20230204

• 地质勘探 • 上一篇    下一篇

塔北隆起西部地区白垩系碎屑岩油气成藏规律及成藏模式

徐壮1,2, 石万忠3, 王任3, 骆福嵩4, 夏永涛4, 覃硕3, 张晓3   

  1. 1. 东华理工大学 核资源与环境国家重点实验室, 南昌 330013;
    2. 东华理工大学 地球科学学院, 南昌 330013;
    3. 中国地质大学 资源学院, 武汉 430074;
    4. 中国石化西北油田分公司 勘探开发研究院, 乌鲁木齐 830011
  • 收稿日期:2022-04-19 修回日期:2022-06-25 出版日期:2023-03-01 发布日期:2023-03-07
  • 作者简介:徐壮(1989-),男,博士,讲师,主要从事沉积储层评价方面的科研和教学工作。地址:(330013)江西省南昌市经开区广兰大道418号。Email:zhuangxu@ecut.edu.cn。
  • 基金资助:
    111引智项目“沉积盆地动力学与油气富集机理”(编号:B14031)、核资源与环境国家重点实验室自主基金“高放废物地质处置库围岩阻滞机理研究”(编号:2020Z09)联合资助。

Hydrocarbon accumulation law and model of Cretaceous clastic rocks in western Tabei uplift

XU Zhuang1,2, SHI Wanzhong3, WANG Ren3, LUO Fusong4, XIA Yongtao4, QIN Shuo3, ZHANG Xiao3   

  1. 1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China;
    2. School of Earth Sciences, East China University of Technology, Nanchang 330013, China;
    3. Faculty of Earth Resources, China University of Geosciences(Wuhan), Wuhan 430074, China;
    4. Research Institute of Exploration and Production, Sinopec Northwest Oilfield Company, Urumqi 830011, China
  • Received:2022-04-19 Revised:2022-06-25 Online:2023-03-01 Published:2023-03-07

摘要: 以岩心观察、物性分析、地球化学分析和三维地震资料为基础,通过单井、连井沉积相分析、地震精细解释及优势砂体识别等方法,从油气来源、油气充注特征、输导体系及储盖组合等4个方面对塔北隆起西部地区白垩系碎屑岩油气成藏规律及模式进行了研究。研究结果表明: ①研究区白垩系油气具有“陆源”特征,石油主要来自库车坳陷三叠系湖相烃源岩,天然气主要来自库车坳陷侏罗系煤系烃源岩,区内深部三叠系海相烃源岩贡献极小。②研究区白垩系油气充注持续时间长,成藏时期晚,早期生油,晚期生气,油成藏于中新世(4.0~22.0 Ma),气成藏于晚中新世—中上新世(3.5~11.0 Ma),受2.6~3.5 Ma构造隆升影响,气藏成熟度较低。③研究区油气输导体系较发育,天山南地区以断裂和不整合面作为主要运移通道;顺北地区以不整合面和巴西改组薄层砂体为运移通道。④研究区储层主要发育在舒善河组和巴西改组,含砂率一般高于60%,与其上部发育的连续泥岩构成良好的储盖组合;优质储层的分布受沉积相控制,天山南地区优质储层主要分布在扇三角洲前缘砂坝及滩坝,顺北地区优质储层主要分布在辫状河三角洲前缘朵体,目前探井未钻遇朵体最高部位,油气显示相对较差;顺北地区储层物性更佳。⑤研究区天山南与顺北地区因断裂活动强度及储盖组合特征存在差异造成了二者的油气藏类型不同,前者以低幅度构造、构造-岩性复合油气藏为主,后者以规模较小的岩性油气藏为主。

关键词: 成藏模式, 陆相烃源岩, 辫状河三角洲, 构造-岩性复合圈闭, 碎屑岩储层, 下白垩统, 天山南地区, 顺北地区, 库车坳陷, 塔北隆起西部

Abstract: Based on core observation and physical property, geochemical analysis and 3D seismic data, through sedimentary facies analysis of single well and well-tie profile, fine seismic interpretation and identification of dominant sand bodies, the hydrocarbon accumulation law and model of Cretaceous clastic rocks in western Tabei uplift were studied from the aspects of oil source, oil and gas charging characteristics, transport system and reservoircap assemblage. The results show that:(1) The Cretaceous oil and gas in the study area has the characteristics of terrigenous origin. The oil mainly comes from Triassic lacustrine source rocks in Kuqa Depression, the gas mainly comes from Jurassic coal-measure source rocks in Kuqa Sag, while the deep Triassic marine source rocks contribute a little to oil and gas.(2) The Cretaceous oil and gas charging in the study area lasted for a long time, and the accumulation period was late. The accumulation can be divided into two phases:oil generation in the early period and gas accumulation in the late period. Oil accumulation occurred in the Miocene(4.0-22.0 Ma), and gas accumulation occurred in the early Pleistocene(3.5-11.0 Ma). Affected by the structural uplift of 2.6-3.5 Ma, the gas reservoir maturity was low.(3) The oil and gas transport system in the study area is well developed. Faults and unconformities are used as the main migration channels in southern Tianshan Mountains. The unconformity surface and thin sand bodies of Baxigai Formation are the migration channels in Shunbei area.(4) The reservoirs in the study area are mainly developed in Shushanhe Formation and Baxigai Formation, with sand content generally higher than 60%, which constitute a good reservoir-cap assemblage with the continuous mudstone developed in the upper part. The distribution of high-quality reservoirs is controlled by sedimentary facies. The high-quality reservoirs in southern Tianshan Mountains are mainly distributed in the front sand bar and beach-bar of fan delta, while the high-quality reservoirs in Shunbei area are mainly distributed in front lobe of braided river delta. At present, the exploration wells are not at the highest part of the lobe, and the oil and gas shows are relatively poor. the reservoir properties in Shunbei area are better.(5) Due to different fault activities and reservoir-cap assemblages, there are obvious differences in the types of oil and gas reservoirs between southern Tianshan Mountains and Shunbei area. The oil and gas reservoirs in southern Tianshan Mountains are mainly low-amplitude structural and structural-lithologic composite reservoirs. The oil and gas reservoirs in Shunbei area are mainly lithologic reservoirs with small scale.

Key words: accumulation model, continental source rock, braided river delta, tectonic-lithologic trap, clastic reservoir, Lower Cretaceous, southern Tianshan Mountains, Shunbei area, Kuqa Depression, western Tabei uplift

中图分类号: 

  • TE122.1
[1] 贾存善. 塔里木盆地沙雅隆起油气成因及运移方向研究[D]. 北京:中国矿业大学(北京), 2012. JIA Cunshan. Studies on origins and migration direction of petroleum in Shaya uplift of Tarim Basin[D]. Beijing:China University of Mining & Technology(Beijing), 2012.
[2] 罗浩渝, 陈军, 章学岐, 等. 河控浅水三角洲前缘沉积特征及对岩性油藏的控制:以库车坳陷南斜坡巴西改组为例[J]. 岩性油气藏, 2021, 33(5):70-80. LUO Haoyu, CHEN Jun, ZHANG Xueqi, et al. Sedimentary characteristics of fluvial dominated shallow water delta front and its control on lithologic reservoir:A case study of Baxigai Formation in south slope of Kuqa Depression[J]. Lithologic Reservoirs, 2021, 33(5):70-80.
[3] 吴根耀, 朱德丰, 梁江平, 等. 塔里木盆地异常高压气藏的主要地质特征和成藏模式[J]. 石油实验地质, 2013, 35(4):351-363. WU Genyao, ZHU Defeng, LIANG Jiangping, et al. Main geological features and accumulation models of abnormally highpressured gas reservoirs in Tarim Basin[J]. Petroleum Geology & Experiment, 2013, 35(4):351-363.
[4] 康弘男. 塔里木盆地顺北地区油气地球化学及油气成藏期研究[D]. 北京:中国石油大学(北京), 2019. KANG Hongnan. The geochemical characteristics and accumulation period of oil and gas in the north Shuntugole of Tarim Basin[D]. Beijing:China University of Petroleum(Beijing), 2019.
[5] 韩强, 李宗杰, 杨子川, 等. 塔里木盆地三道桥地区油气成藏特征[J]. 油气地质与采收率, 2015, 22(6):14-20. HAN Qiang, LI Zongjie, YANG Zichuan, et al. Characteristics of hydrocarbon accumulation in the Sandaoqiao area of Tarim Basin[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(6):14-20.
[6] 李本亮, 陈竹新, 雷永良, 等. 天山南缘与北缘前陆冲断带构造地质特征对比及油气勘探建议[J]. 石油学报, 2011, 32(3):395-403. LI Benliang, CHEN Zhuxin, LEI Yongliang, et al. Structural geology correction of foreland thrust-folded belts between the southern and northern edges of the Tianshan Mountain and some suggestions for hydrocarbon exploration[J]. Acta Petrolei Sinica, 2011, 32(3):395-403.
[7] 侯晓阳. 天山南地区油气成藏主控因素分析[D]. 北京:中国地质大学(北京), 2010. HOU Xiaoyang. The analysis on main control factors for hydrocarbon accumulation in the south of Tian Shan area[D]. Beijing:China University of Geosciences(Beijing), 2010.
[8] 刘露, 彭军, 吴慧明, 等. 巴楚地区与塔中地区东河塘组储层储集性能差异分析[J]. 岩性油气藏, 2015, 27(5):225-231. LIU Lu, PENG Jun, WU Huiming, et al. Reservoir property differences of Donghetang Formation in Bachu and Tazhong area[J]. Lithologic Reservoirs, 2015, 27(5):225-231.
[9] 林波, 张旭, 况安鹏, 等. 塔里木盆地走滑断裂构造变形特征及油气意义:以顺北地区1号和5号断裂为例[J]. 石油学报, 2021, 42(7):906-923. LIN Bo, ZHANG Xu, KUANG Anpeng, et al. Structural deformation characteristics of strike-slip faults in Tarim Basin and their hydrocarbon significance:A case study of No. 1 fault and No. 5 fault in Shunbei area[J]. Acta Petrolei Sinica, 2021, 42(7):906-923.
[10] 谷茸, 云露, 朱秀香, 等. 塔里木盆地顺北油田油气来源研究[J]. 石油实验地质, 2020, 42(2):248-254. GU Rong, YUN Lu, ZHU Xiuxiang, et al. Oil and gas sources in Shunbei oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2):248-254.
[11] 邓尚, 李慧利, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5):878-888. DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of different activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5):878-888.
[12] 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征:以顺北油气田为例[J]. 石油学报, 2022, 43(6):770-787. YUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation:A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6):770-787.
[13] 于慧玲. 天山南地区构造样式和演化特征分析[J]. 石油物探, 2008, 47(3):277-284. YU Huiling. Analysis of structural patterns and evolution characteristics in south Tianshan area[J]. Geophysical Prospecting for Petroleum, 2008, 47(3):277-284.
[14] 贾承造, 魏国齐, 姚慧君, 等. 盆地构造演化与区域构造地质[M]. 北京:石油工业出版社, 1995. JIA Chengzao, WEI Guoqi, YAO Huijun, et al. Tectonic evolution and regional structural geology[M]. Beijing:Petroleum Industry Press, 1995.
[15] 冯建伟, 孙建芳, 张亚军, 等. 塔里木盆地库车坳陷断层相关褶皱对裂缝发育的控制[J]. 石油与天然气地质, 2020, 41(3):543-557. FENG Jianwei, SUN Jianfang, ZHANG Yajun, et al. Control of fault-related folds on fracture development in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(3):543-557.
[16] 帕日地古丽·布苏克. 塔里木盆地温宿凸起及其北缘新生代构造变形特征与空间差异性分析[D]. 杭州:浙江大学, 2022. PARIDIGULI Busuke. Cenozoic structural deformation and spatial variation of the Wensu uplift and its northern margin, Tarim Basin[D]. Hangzhou:Zhejiang University, 2022.
[17] 李忠, 彭守涛. 天山南北麓中-新生界碎屑锆石U-Pb年代学记录、物源体系分析与陆内盆山演化[J]. 岩石学报, 2013, 29(3):739-755. LI Zhong, PENG Shoutao. U-Pb geochronological records and provenance system analysis of the Mesozoic-Cenozoic sandstone detrital zircons in the northern and southern piedmonts of Tianshan, northwest China:Responses to intracontinental basinrange evolution[J]. Acta Petrologica Sinica, 2013, 29(3):739-755.
[18] WANG Qi, HAO Fang, CAO Zicheng, et al. Geochemistry and origin of the ultra-deep Ordovician oils in the Shunbei field, Tarim Basin, China:Implications on alteration and mixing[J]. Marine and Petroleum Geology, 2021, 123:104725.
[19] 马庆佑, 曹自成, 蒋华山, 等. 塔河-顺北地区走滑断裂带的通源性及其与油气富集的关系[J]. 海相油气地质, 2020, 25(4):327-334. MA Qingyou, CAO Zicheng, JIANG Huashan, et al. Sourceconnectivity of strike slip fault zone and its relationship with oil and gas accumulation in Tahe-Shunbei area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2020, 25(4):327-334.
[20] 赵孟军, 张宝民. 库车前陆坳陷形成大气区的烃源岩条件[J]. 地质科学, 2002, 37(增刊1):35-44. ZHAO Mengjun, ZHANG Baomin. Source rocks for a giant gas-accumulation area in the Kuqa foreland depression[J]. Scientia Geologica Sinica, 2002, 37(Suppl 1):35-44.
[21] 杜金虎, 王招明, 胡素云, 等. 库车前陆冲断带深层大气区形成条件与地质特征[J]. 石油勘探与开发, 2012, 39(4):385-393. DU Jinhu, WANG Zhaoming, HU Suyun, et al. Formation and geological characteristics of deep giant gas provinces in the Kuqa foreland thrust belt, Tarim Basin[J]. Petroleum Exploration and Development, 2012, 39(4):385-393.
[22] 王招明. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 2014, 25(2):153-166. WANG Zhaoming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(2):153-166.
[23] 赵孟军, 卢双舫, 李剑. 库车油气系统天然气地球化学特征及气源探讨[J]. 石油勘探与开发, 2002, 29(6):4-7. ZHAO Mengjun, LU Shuangfang, LI Jian. The geochemical features of natural gas in Kuqa Depression and the discussion on the gas source[J]. Petroleum Exploration and Development, 2002, 29(6):4-7.
[24] 刘春, 陈世加, 赵继龙, 等. 远源油气成藏条件与富集主控因素:以库车坳陷南部斜坡带中生界-新生界油气藏为例[J]. 石油学报, 2021, 42(3):307-318. LIU Chun, CHEN Shijia, ZHAO Jilong, et al. Accumulation conditions and main controlling factors of far-source oil and gas reservoirs:A case study of Meso-Cenozoic reservoirs in the southern slope of Kuqa depression[J]. Acta Petrolei Sinica, 2021, 42(3):307-318.
[25] 朱光有, 杨海军, 张斌, 等. 油气超长运移距离[J]. 岩石学报, 2013, 29(9):3192-3212. ZHU Guangyou, YANG Haijun, ZHANG Bin, et al. Ultra-long distance migration of Hydrocarbon[J]. Acta Petrologica Sinica, 2013, 29(9):3192-3212.
[26] 王培荣, 张大江, 宋孚庆, 等. 区分渤中坳陷三套烃源岩的地球化学参数组合[J]. 中国海上油气, 2004, 16(3):14-17. WANG Peirong, ZHANG Dajiang, SONG Fuqing, et al. The comprehensive geochemical parameters for distinguishing three sets of source rock in Bozhong depression[J]. China Offshore Oil and Gas, 2004, 16(3):14-17.
[27] 杨舒越. 塔里木盆地拜城凹陷晚期生烃作用研究[D].北京:中国地质大学(北京), 2020. YANG Shuyue. Late hydrocarbon generation in Baicheng sag of the Tarim Basin[D]. Beijing:China University of Geosciences (Beijing), 2020.
[28] 刘化清, 刘宗堡, 吴孔友, 等. 岩性地层油气藏区带及圈闭评价技术研究新进展[J]. 岩性油气藏, 2021, 33(1):25-36. LIU Huaqing, LIU Zongbao, WU Kongyou, et al. New progress in study of play and trap evaluation technology for lithostratigraphic reservoirs[J]. Lithologic Reservoirs, 2021, 33(1):25-36.
[29] 刘建良, 刘可禹, 姜振学, 等. 库车前陆盆地玉东地区白垩系油气成藏过程[J]. 石油学报, 2018, 39(6):620-630. LIU Jianliang, LIU Keyu, JIANG Zhenxue, et al. Cretaceous hydrocarbon accumulation process in Yudong area, Kuqa foreland basin[J]. Acta Petrolei Sinica, 2018, 39(6):620-630.
[30] 肖瑶. 库车坳陷北缘与南天山的构造-热演化关系[D]. 北京:中国石油大学(北京), 2018. XIAO Yao. Tectono-thermal evolution of northern Kuqa Depression and south Tianshan[D]. Beijing:China University of Petroleum(Beijing), 2018.
[31] 张威. 塔北西部陆相油气来源及运移方向研究[D]. 北京:中国石油大学(北京), 2018. ZHANG Wei. Study on the source and migration direction of continental facies oil and gas in the western part of north Tarim Basin[D]. Beijing:China University of Petroleum(Beijing), 2018.
[32] 崔海峰. 塔北隆起西段构造特征与油气成藏[D]. 成都:成都理工大学, 2011. CUI Haifeng. Tectonic feature and reservoir accumulation in the west of Tabei uplift[D]. Chengdu:Chengdu University of Technology, 2011.
[33] 雷志诚. 网毯式成藏体系断裂输导油气作用及规律研究[D]. 北京:中国石油大学(北京), 2018. LEI Zhicheng. Study on the fault controlling hydrocarbon migration and regularity law of the hydrocarbon accumulation in the fault-fracture mesh petroleum plays:A case study on the Donghetang area, northern Tarim Basin[D]. Beijing:China University of Petroleum(Beijing), 2018.
[34] 李建龙, 吴高奎, 林畅松, 等. 古隆起斜坡区不整合三角带对地层圈闭的控制:以塔北隆起西部白垩系为例[J]. 东北石油大学学报, 2019, 43(2):68-78. LI Jianlong, WU Gaokui, LIN Changsong, et al. Restriction of unconformity triangle zone on stratigraphic traps in the slope area with paleo-uplift:A case study of the Cretaceous in the west north-Tarim uplift[J]. Journal of Northeast Petroleum University, 2019, 43(2):68-78.
[35] 胡媛, 张子明, 王恩辉. 塔里木盆地不同类型斜坡带特征及其控油作用[J]. 岩性油气藏, 2010, 22(4):72-79. HU Yuan, ZHANG Ziming, WANG Enhui. Characteristics of different types of slope belt and its oil-control effect in Tarim Basin[J]. Lithologic Reservoirs, 2010, 22(4):72-79.
[1] 何春丰, 张翔, 田景春, 夏永涛, 杨燕茹, 陈杰, 王鑫宇. 塔北新和地区下白垩统舒善河组薄砂体沉积相特征及沉积模式[J]. 岩性油气藏, 2023, 35(1): 120-131.
[2] 隋立伟, 杨文璐, 李军辉, 樊晓东, 姜洪福, 文全, 张大智, 袁勇. 断陷湖盆滩坝沉积特征及其控藏作用——以塔南凹陷白垩系铜钵庙组为例[J]. 岩性油气藏, 2022, 34(5): 100-109.
[3] 李承泽, 陈国俊, 田兵, 袁晓宇, 孙瑞, 苏龙. 珠江口盆地深层高温高压下的水岩作用[J]. 岩性油气藏, 2022, 34(4): 141-149.
[4] 汪林波, 韩登林, 王晨晨, 袁瑞, 林伟, 张娟. 库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J]. 岩性油气藏, 2022, 34(3): 49-59.
[5] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[6] 杜江民, 龙鹏宇, 秦莹民, 张桐, 马宏宇, 盛军. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏, 2021, 33(5): 1-10.
[7] 罗浩渝, 陈军, 章学岐, 孟祥霞, 赵凤全, 吴少军, 郭璇. 河控浅水三角洲前缘沉积特征及对岩性油藏的控制——以库车坳陷南斜坡巴西改组为例[J]. 岩性油气藏, 2021, 33(5): 70-80.
[8] 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120.
[9] 张闻亭, 龙礼文, 肖文华, 魏浩元, 李铁锋, 董震宇. 酒泉盆地青西凹陷窟窿山构造带下沟组沉积特征及储层预测[J]. 岩性油气藏, 2021, 33(1): 186-197.
[10] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[11] 袁纯, 张惠良, 王波. 大型辫状河三角洲砂体构型与储层特征——以库车坳陷北部阿合组为例[J]. 岩性油气藏, 2020, 32(6): 73-84.
[12] 史忠生, 庞文珠, 陈彬滔, 薛罗, 赵艳军, 马轮. 南苏丹Melut盆地下组合近源白垩系成藏模式与勘探潜力[J]. 岩性油气藏, 2020, 32(5): 23-33.
[13] 胡贺伟, 李慧勇, 许鹏, 陶莉, 华晓莉. 断裂密集带油气差异富集主控因素探讨——以歧口凹陷歧南断阶带为例[J]. 岩性油气藏, 2020, 32(5): 34-45.
[14] 刘俞佐, 石万忠, 刘凯, 王任, 吴睿. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3): 56-67.
[15] 山鑫杰, 王飞宇, 刘念, 冯伟平, 江涛, 杜喜, 程志强, 李思嘉, 李月. 二连盆地呼仁布其凹陷南洼下白垩统烃源岩分布特征与油源分析[J]. 岩性油气藏, 2020, 32(3): 104-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!