岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 47–58.doi: 10.12108/yxyqc.20230205

• 地质勘探 • 上一篇    下一篇

川东北五宝场地区侏罗系沙溪庙组沉积特征

方锐1, 蒋裕强1, 陈沁2, 曾令平2, 罗宇卓2, 周亚东1, 杜磊2, 杨广广3   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 中国石油西南油气田公司 川东北气矿, 四川 达州 635000;
    3. 中国石油西南油气田公司 勘探开发研究院, 成都 610000
  • 收稿日期:2022-05-10 修回日期:2022-05-23 出版日期:2023-03-01 发布日期:2023-03-07
  • 作者简介:方锐(1995-),男,西南石油大学在读博士研究生,研究方向为地震沉积学。地址:(610500)四川省成都市新都区新都大道8号西南石油大学。Email:342645160@qq.com。
  • 基金资助:
    重庆市自然科学基金面上项目“基于成岩系统剖析的致密砂岩储层差异致密化机理及渗流差异响应研究”(编号:cstc2021jcyjmsxmX0897)资助。

Sedimentary characteristics of Jurassic Shaximiao Formation in Wubaochang area, northeastern Sichuan Basin

FANG Rui1, JIANG Yuqiang1, CHEN Qin2, ZENG Lingping2, LUO Yuzhuo2, ZHOU Yadong1, DU Lei2, YANG Guangguang3   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Northeast Sichuan Gas Field, PetroChina Southwest Oil & Gas Field Company, Dazhou 635000, Sichuan, China;
    3. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Field Company, Chengdu 610000, China
  • Received:2022-05-10 Revised:2022-05-23 Online:2023-03-01 Published:2023-03-07

摘要: 根据基准面旋回变化原理,利用野外露头、钻井、测井和地震地层切片等资料,对川东北五宝场地区侏罗系沙溪庙组二段开展了层序结构分析和不同可容空间下河道构成特征及河型转换模式等方面的研究。研究结果表明: ①川东北五宝场地区侏罗系沙溪庙组二段主要发育1个三级及3个四级基准面旋回,各四级层序在低可容空间下为厚层、叠置箱形砂体,随着基准面上升,可容空间增大,到层序顶部过渡为相对孤立的砂体沉积;②沙二段沉积时期,研究区气候干燥,砂岩粒度大、成熟度低,发育强水动力构造,地震剖面上为平行反射,河流相沉积特征明显,发育多个低可容空间下的间断正韵律相互叠置的辫状河沉积体系及高可容空间下具“二元”结构的曲流河沉积体系;③沙二段河流相地层自下而上具有“辫—曲”转换特征,低可容空间下,砂体大面积展布,地震地貌上表现为相互叠置的辫状河河道,当基准面迅速上升时,可容空间增大,地震地貌上表现为相对孤立的曲流河河道;④研究区可容空间和沉积物供给比值(A/S)主要受大巴山物源区强烈的构造活动及温暖潮湿向炎热干旱的气候变化影响。

关键词: A/S, 河流相, 基准面旋回, 地层切片, 沙溪庙组, 侏罗系, 五宝场地区, 川东北

Abstract: Based on the principle of base level cycle change, the data of field outcrop, drilling, logging and seismic stratigraphic slice were used to analyze the sequence structure, river channel composition characteristics under different accommodation spaces and river type conversion model of the second member of Jurassic Shaximiao Formation in Wubaochang area of northeastern Sichuan Basin. The results show that:(1) There are mainly one third-order and three fourth-order base level cycles developed in the second member of Jurassic Shaximiao Formation in Wubaochang area of northeastern Sichuan Basin. Each fourth-order sequence is a thick layered stacked box type sand body under the low accommodation space. With the base level rising, the accommodation space increases, and it transits to a relatively isolated sand body deposition at the top of the sequence.(2) The paleoclimate of the second member of Shaximiao Formation was dry. Due to the near provenance deposition, the sandstone was coarse and the maturity was low, the strong hydrodynamic structure was developed, it was parallel reflection on seismic profile, and the fluvial facies characteristics were obvious. There are many braided river sedimentary systems with discontinuous positive rhythms superimposed on each other in low accommodation space and meandering river sedimentary systems with binary structure in high accommodation space.(3) The fluvial facies strata of the second member of Shaximiao Formation have a "braid curve" transformation law from bottom to top, which is specifically shown as follows:under the low accommodation space, sand bodies are distributed in a large area, and the seismic geomorphology is shown as mutually overlapping braided river channels. When the base level rises rapidly, the accommodation space increases, and the seismic geomorphology shows a relatively isolated meandering river channel.(4) The accommodation space and sediment supply ratio(A/S) is mainly affected by strong tectonic activity and change from warm and humid to hot and dry climate in Daba Mountain provenance area.

Key words: accommodation space and sediment supply ratio, fluvial facies, base level cycle, stratal slice, Shaximiao Formation, Jurassic, Wubaochang area, northeastern Sichuan Basin

中图分类号: 

  • TE121
[1] BLUM M D, MARRIOTT S B, LECLAIR S F. Fluvial sedimentology Ⅶ[M]. Malden:Blackwell, 2005:399-424.
[2] 张昌民, 朱锐, 赵康, 等. 从端点走向连续:河流沉积模式研究进展述评[J].沉积学报, 2017, 35(5):926-944. ZHANG Changmin, ZHU Rui, ZHAO Kang, et al. From end member to continuum:Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5):926-944.
[3] 倪晋仁, 王随继, 王光谦. 现代冲积河流的河型空间转化模式探讨[J].沉积学报, 2000, 18(1):1-6. NI Jinren, WANG Suiji, WANG Guangqian. Spatial variations of channel patterns[J]. Acta Sedimentologica Sinica, 2000, 18(1):1-6.
[4] 王随继, 倪晋仁, 王光谦. 古河型演化模式及其影响因素的沉积体系分析[J].石油勘探与开发, 2000, 27(5):102-105. WANG Suiji, NI Jinren, WANG Guangqian. Depositional system analysis on the evolution model of ancient river type and its controlling factors[J]. Petroleum Exploration and Development, 2000, 27(5):102-105.
[5] 王随继, 倪晋仁, 王光谦. 河型的时空演变模式及其间关系[J].清华大学学报(自然科学版), 2000, 40(增刊1):96-100. WANG Suiji, NI Jinren, WANG Guangqian. Temporal and spatial evolution models of fluvial channel patterns and their interrelation[J]. Journal of Tsinghua University(Science and Technology), 2000, 40(Suppl 1):96-100.
[6] 李胜利, 于兴河, 姜涛, 等. 河流辫-曲转换特点与废弃河道模式[J].沉积学报, 2017, 35(1):1-9. LI Shengli, YU Xinghe, JIANG Tao, et al. Meander-braided transition features and abandoned channel patterns in fluvial environment[J]. Acta Sedimentologica Sinica, 2017, 35(1):1-9.
[7] 谭程鹏, 于兴河, 李胜利, 等. 辫状河-曲流河转换模式探讨:以准噶尔盆地南缘头屯河组露头为例[J].沉积学报, 2014, 32(3):450-458. TAN Chengpeng, YU Xinghe, LI Shengli, et al. Discussion on the model of braided river transform to meandering river:As an example of Toutunhe Formation in southern Junggar Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3):450-458.
[8] 唐武, 王英民, 赵志刚, 等. 河型转化研究进展综述[J].地质论评, 2016, 62(1):138-152. TANG Wu, WANG Yingmin, ZHAO Zhigang, et al. A review of fluvial pattern transformation[J]. Geological Review, 2016, 62(1):138-152.
[9] 王航, 杨海风, 黄振, 等. 基于可容纳空间变化的河流相演化新模式及其控藏作用:以莱州湾凹陷垦利A构造为例[J].岩性油气藏, 2020, 32(5):73-83. WANG Hang, YANG Haifeng, HUANG Zhen, et al. A new model for sedimentary evolution of fluvial faices based on accommodation space change and its impact on hydrocarbon accumulation:A case study of Kenli-A structure in Laizhouwan Depression[J]. Lithologic Reservoirs, 2020, 32(5):73-83.
[10] 白振华, 詹燕涛, 王赢, 等. 苏里格气田苏14井区盒8段河流相砂体展布与演化规律研究[J].岩性油气藏, 2013, 25(1):56-62. BAI Zhenhua, ZHAN Yantao, WANG Ying, et al. Fluvial sand bodies distribution and evolution of He 8 member in Su 14 block of Sulige gas field[J]. Lithologic Reservoirs, 2013, 25(1):56-62.
[11] ALLEN J R L. Studies in fluviatile sedimentation:an exploratory quantitative model for the architecture of avulsion-controlled alluvial suites[J]. Sedimentary Geology, 1978, 21(2):129-147.
[12] 朱筱敏, 董艳蕾, 曾洪流, 等. 沉积地质学发展新航程:地震沉积学[J].古地理学报, 2019, 21(2):189-201. ZHU Xiaomin, DONG Yanlei, ZENG Hongliu, et al. New development trend of sedimentary geology:Seismic sedimentology[J]. Journal of Palaeogeography(Chinese Edition), 2019, 21(2):189-201.
[13] 曾洪流. 地震沉积学在中国:回顾和展望[J]. 沉积学报, 2011, 29(3):417-426. ZENG Hongliu. Seismic sedimentology in China:A review[J]. Acta Sedimentologica Sinica, 2011, 29(3):417-426.
[14] 刘化清, 卫平生, 李相博, 等. 对地震沉积学理论创新的认识[J].岩性油气藏, 2012, 24(1):7-12. LIU Huaqing, WEI Pingsheng, LI Xiangbo, et al. Discussion on theoretical innovation of seismic sedimentology[J]. Lithologic Reservoirs, 2012, 24(1):7-12.
[15] 倪长宽, 苏明军, 刘化清, 等. 有关地层切片应用条件和分辨率的探讨[J].天然气地球科学, 2014, 25(11):1830-1838. NI Changkuan, SU Mingjun, LIU Huaqing, et al. Discussion on application conditions and resolution of stratal slice[J]. Natural Gas Geoscience, 2014, 25(11):1830-1838.
[16] AINSWORTH R B, VAKARELOV B K, MACEACHERN J A, et al. Anatomy of a shoreline regression:Implications for the high-resolution stratigraphic architecture of deltas[J]. Sedimentary Research, 2017, 87(5):1-35.
[17] 曾洪流, 赵贤正, 朱筱敏, 等. 隐性前积浅水曲流河三角洲地震沉积学特征:以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例[J].石油勘探与开发, 2015, 42(5):566-576. ZENG Hongliu, ZHAO Xianzheng, ZHU Xiaomin, et al. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta:A case from the Suning area of Raoyang sag in Jizhong depression, Bohai Bay Basin, NE China[J]. Petroleum Exploration and Development, 2015, 42(5):566-576.
[18] 刘化清, 苏明军, 倪长宽, 等. 薄砂体预测的地震沉积学研究方法[J].岩性油气藏, 2018, 30(2):1-11. LIU Huaqing, SU Mingjun, NI Changkuan, et al. Thin bed prediction from interbedded background:Revised seismic sedimentological method[J]. Lithologic Reservoirs, 2018, 30(2):1-11.
[19] 刘海, 林承焰, 董春梅, 等. 基于地震沉积学的复杂曲流带沉积相研究[J].中国石油大学学报(自然科学版), 2018, 42(6):30-39. LIU Hai, LIN Chengyan, DONG Chunmei, et al. Sedimentary facies of complex meandering belt based on seismic sedimentology[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6):30-39.
[20] 刘化清, 倪长宽, 陈启林, 等. 地层切片的合理性及影响因素[J].天然气地球科学, 2014, 25(11):1821-1829. LIU Huaqing, NI Changkuan, CHEN Qilin, et al. Rationality and influencing factors of strata slicing[J]. Natural Gas Geoscience, 2014, 25(11):1821-1829.
[21] 郭正吾, 邓康龄, 韩永辉, 等. 四川盆地形成与演化[M]. 北京:地质出版社, 1996, 98-121. GUO Zhengwu, DENG Kangling, HAN Yonghui, et al. Formation and evolution of the Sichuan Basin[M]. Beijing:Geological Publishing House, 1996:98-121.
[22] 李军, 陶士振, 汪泽成, 等. 川东北地区侏罗系油气地质特征与成藏主控因素[J].天然气地球科学, 2010, 21(5):732-741. LI Jun, TAO Shizhen, WANG Zecheng, et al. Characteristics of Jurassic petroleum geology and main factors of hydrocarbon accumulation in NE Sichuan Basin[J]. Natural Gas Geoscience, 2010, 21(5):732-741.
[23] WRIGHT V P, MARRIOTT S B. The sequence stratigraphy of fluvial depositional systems:The role of floodplain sediment storage[J]. Sedimentary Geology, 1993, 86(3/4):203-210.
[24] LIU Junlong, YIN Wei, JI Youliang, et al. Sequence architecture and sedimentary characteristics of a Middle Jurassic incised valley, western Sichuan depression, China[J]. Petroleum Science, 2018, 15(2):230-251.
[25] 陈留勤, 郭福生, 梁伟. 河流相层序地层学研究现状及发展方向[J].地层学杂志, 2014, 38(2):227-235. CHEN Liuqin, GUO Fusheng, LIANG Wei. A Review of terrestrial sequence stratigraphy[J]. Journal of Stratigraphy, 2014, 38(2):227-235.
[26] 邓宏文, 王红亮, 阎伟鹏, 等. 河流相层序地层构成模式探讨[J].沉积学报, 2004, 22(3):373-379. DENG Hongwen, WANG Hongliang, YAN Weipeng, et al. Architecture model of sequence stratigraphy in fluvial facies[J]. Acta Sedimentologica Sinica, 2004, 22(3):373-379.
[27] 何玉平, 刘招君, 杜江峰. 高分辨率层序地层学基准面旋回识别[J].世界地质, 2003, 22(1):21-25. HE Yuping, LIU Zhaojun, DU Jiangfeng. Identification of base level cycles in high resolution sequence stratigraphy[J]. World Geology, 2003, 22(1):21-25.
[28] 芮志锋, 邓宏文, 杨小江, 等. 珠江口盆地陆丰地区恩平组层序地层控制的河道构成样式[J]. 天然气地球科学, 2019, 30(5):701-711. RUI Zhifeng, DENG Hongwen, YANG Xiaojiang, et al. The channel stacking pattern under the control of sequence stratigraphic of Enping Formation in Lufeng area, Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2019, 30(5):701-711.
[29] 邓胜徽, 卢远征, 赵怡, 等. 中国侏罗纪古气候分区与演变[J]. 地学前缘, 2017, 24(1):106-142. DENG Shenghui, LU Yuanzheng, ZHAO Yi, et al. The Jurassic palaeoclimate regionalization and evolution of China[J]. Earth Science Frontiers, 2017, 24(1):106-142.
[30] 钱利军, 陈洪德, 林良彪, 等. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J]. 沉积学报, 2012, 30(6):1061-1071. CHEN Lijun, CHEN Hongde, LIN Liangbiao, et al. Geochemical characteristics and environmental implications of middle Jurassic Shaximiao Formation, western margin of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6):1061-1071.
[31] 谈明轩, 朱筱敏, 张自力, 等. 断陷盆地拗陷期河流层序样式及其地貌响应:以渤海湾盆地沙垒田凸起区新近系明化镇组下段为例[J].古地理学报, 2020, 22(3):428-439. TAN Mingxuan, ZHU Xiaomin, ZHANG Zili, et al. Fluvial sequence pattern and its response of geomorphy in depression phase of rift basin:A case study of the Lower Member of Neogene Minghuazhen Formation in Shaleitian Uplift area, Bohai Bay Basin[J]. Journal of Palaeogeography(Chinese Edition), 2020, 22(3):428-439.
[32] 刘兴艳, 李墨寒, 叶泰然. 川西侏罗系复杂河道精细刻画及沉积相带识别[J].石油物探, 2019, 58(5):750-757. LIU Xingyan, LI Mohan, YE Tairan. Fine characterization of complicated channels in western Sichuan and identification of sedimentary facies[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):750-757.
[33] 李维, 朱筱敏, 陈刚, 等. 基于等时界面识别的浅水三角洲-河流沉积体系研究:以高邮凹陷黄珏地区古近系垛一段为例[J].沉积学报, 2018, 36(1):110-119. LI Wei, ZHU Xiaomin, CHEN Gang, et al. Research based on isochronous surface about shallow-water deltas and fluvial sedimentary system:A case from Duo1 Member of Paleogene in Huangjue area, Gaoyou Sag[J]. Acta Sedimentologica Sinica, 2018, 36(1):110-119.
[34] GARYJ H, MROYHAN G, HIRANYA S. Controls on large-scale patterns of fluvial sandbody distribution in alluvial to coastal plain strata:Upper Cretaceous Blackhawk Formation, Wasatch Plateau, Central Utah, USA[J]. Sedimentology, 2012, 59(7):2226-2258.
[35] 杨跃明, 王小娟, 陈双玲, 等. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征[J].天然气工业, 2022, 42(1):12-24. YANG Yueming, WANG Xiaojuan, CHEN Shuangling, et al. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1):12-24.
[1] 谢瑞, 张尚锋, 周林, 刘皓天, 姚明君, 蒋雪桂. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 108-119.
[2] 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151.
[3] 卢迎波. 超稠油注气次生泡沫油生成机理及渗流特征[J]. 岩性油气藏, 2022, 34(6): 152-159.
[4] 何文渊, 云建兵, 钟建华. 川东北二叠系长兴组碳酸盐岩云化成储机制[J]. 岩性油气藏, 2022, 34(5): 1-25.
[5] 康家豪, 王兴志, 谢圣阳, 曾德铭, 杜垚, 张芮, 张少敏, 李阳. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53-65.
[6] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[7] 郑荣臣, 李宏涛, 史云清, 肖开华. 川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏, 2021, 33(3): 13-26.
[8] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[9] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[10] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[11] 徐宇轩, 代宗仰, 胡晓东, 徐志明, 李丹. 川东北沙溪庙组天然气地球化学特征及地质意义——以五宝场地区为例[J]. 岩性油气藏, 2021, 33(1): 209-219.
[12] 袁纯, 张惠良, 王波. 大型辫状河三角洲砂体构型与储层特征——以库车坳陷北部阿合组为例[J]. 岩性油气藏, 2020, 32(6): 73-84.
[13] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[14] 杨甫, 贺丹, 马东民, 段中会, 田涛, 付德亮. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3): 14-23.
[15] 吴家洋, 吕正祥, 卿元华, 杨家静, 金涛. 致密油储层中自生绿泥石成因及其对物性的影响——以川中东北部沙溪庙组为例[J]. 岩性油气藏, 2020, 32(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!