岩性油气藏 ›› 2024, Vol. 36 ›› Issue (2): 170188.doi: 10.12108/yxyqc.20240216
• 论坛与综述 • 上一篇
杨午阳, 魏新建, 李海山
YANG Wuyang, WEI Xinjian, LI Haishan
摘要: 通过梳理国内外人工智能技术在地球物理勘探(物探)领域中的发展历程、主要研究进展以及发展方向,总结了智能物探的优势和面临的难题,并提出了解决方案。研究结果表明:①物探技术在人工智能发展的第2次浪潮中开始与人工智能技术相结合,得益于物探领域数据量的指数级增长、硬件算力的高速发展以及不断出现的新深度学习框架,智能物探技术从早期的机器学习发展为目前的深度学习,在地震资料处理、解释等方面的应用中取得了大量研究成果。②目前智能物探技术被广泛应用于标签集的构建、去噪、断裂检测、层位与层序解释、地震相分类和异常体检测、岩性识别与油气藏开发、地震反演成像等方面,大幅提高了工作效率,降低了工作成本,克服了人工交互操作和人工经验的主观性和不可靠性,助力打破传统物探技术瓶颈。③智能物探技术的发展面临着缺少公开的标签数据集、缺少解决地球物理领域问题的智能化框架及尚未形成适用于地球物理领域共享的智能化开发平台等难题,可以从解决数据基础、构建智能平台、开展网络架构基础性研究及与应用场景结合等方面着手解决;此外,智能物探技术的发展方向还包含智能地震成像方法研究,储层成像方法研究,油气大数据挖掘、智能风险评估与智能决策以及超算软件装备研发等方面。
中图分类号:
[1] 杨午阳,魏新建,何欣. 应用地球物理+AI的智能化物探技术发展策略[J]. 石油科技论坛,2019,38(5):40-47. YANG Wuyang,WEI Xinjian,HE Xin. Development plan for intelligent geophysical prospecting technology of applied geophysical + AI[J]. Petroleum Science and Technology Forum, 2019,38(5):40-47. [2] NILSSON J. A mobile automaton:An application of artificial intelligence techniques[R]. Washington,D.C.:Proceedings International Joint Conference on Artificial Intelligence,1969. [3] CHONG K S,KLEEMAN L. Sonar based map building for a mobile robot[R]. Albuquerque:IEEE International Conference on Robotics and Automation,1997. [4] 蔡鹤皋. 机器人将是21世纪技术发展的热点[J]. 中国机械工程,2000,11(1/2):58-61. CAI Hegao. Robot will be a hot spot of technological development in the twenty first century[J]. China Mechanical Engineering,2000,11(1/2):58-61. [5] AMIGONI F,REGGIANI M,SCHIAFFONATI V. An insightful comparison between experiments in mobile robotics and in science[J]. Autonomous Robots,2009,27(4):313-325. [6] COLAS F,MAHESH S,POMERLEAU F,et al. 3D path planning and execution for search and rescue ground robots[R]. Karlsruhe:IEEE/RSJ International Conference on Intelligent Robots and Systems,2013. [7] LEWIS D D,JONES K S. Natural language processing for information retrieval[J]. Communications of the ACM,1996,39(1):92-101. [8] WINOGRAD T. Understanding natural language[J]. Cognitive Psychology,1972,3(1):1-191. [9] MANNING C D,MANNING C D,SCHÜTZE H. Foundations of statistical natural language processing[M]. Cambridge,Massachusetts:MIT Press,1999. [10] YOUNG T,HAZARIKA D,PORIA S,et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine,2018,13(3):55-75. [11] UMBAUGH S E. Computer vision and image processing:A practical approach using CVIPTools with Cdrom[M]. Englewood:Prentice Hall PTR,1997. [12] VEDALDI A,FULKERSON B. VLFeat:An open and portable library of computer vision algorithms[R]. Firenze:ACM International Conference on Multimedia,2010. [13] SZEGEDY C,VANHOUCKE V,IOFFE S,et al. Rethinking the inception architecture for computer vision[R]. Las Vegas:2016 IEEE Conference on Computer Vision and Pattern Recognition,2016. [14] HE Kaiming,ZHANG Xiangyu,REN Shaoqi,et al. Deep residual learning for image recognition[R]. Las Vegas:2016 IEEE Conference on Computer Vision and Pattern Recognition,2016. [15] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[R]. San Diego:The 3rd International Conference on Learning Representations,2015. [16] RABINER L R,JUANG B H. Fundamentals of speech recognition[M]. Englewood:Prentice Hall PTR,1993. [17] BAHDANAU D,CHOROWSKI J,SERDYUK D,et al. End-toend attention-based large vocabulary speech recognition[R]. Shanghai:The 41st IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2016. [18] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2016,313(5786):504-507. [19] SILVER D,HUANG A,MADDISON C J,et al. Mastering the game of go with deep neural networks and tree search[J]. Nature,2016,529(7587):484-489. [20] MCCULLOCH W S,PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics,1943,5(4):115-133. [21] MINSKY M,PAPERT S A. Perceptrons:An introduction to computational geometry[M]. Cambridge,Massachusetts:MIT Press,2017. [22] ANDERSON J A. A simple neural network generating an interactive memory[J]. Mathematical Biosciences,1972,14(3/4):197-220. [23] FUKUSHIMA K. Cognitron:A self-organizing multilayered neural network[J]. Biological Cybernetics,1975,20(3/4):121-136. [24] FUKUSHIMA K,MIYAKE S. Neocognitron:A self-organizing neural network model for a mechanism of visual pattern recognition[C]//AMARI S,ARBIB M A. Competition and cooperation in neural nets. New York:Springer-Verlag,1982:267-285. [25] RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533-536. [26] BROOMHEAD D S,LOWE D. Radial basis functions,multivariable functional interpolation and adaptive networks[C]// HMSO. RSRE memorandum No. 4148 royal signals and radar establishment. London:HMSO,1988. [27] LEMESHOW S,HOSMER J D W. A review of goodness of fit statistics for use in the development of logistic regression models[J]. American Journal of Epidemiology,1982,115(1):92-106. [28] PREGIBON D. Logistic regression diagnostics[J]. The Annals of Statistics,1981,9(4):705-724. [29] HARRELL F E. Regression modeling strategies:With applications to linear models,logistic and ordinal regression,and survival analysis[M]. Cham:Springer Cham,2015:311-325. [30] HOSMER J D W,LEMESHOW S,STURDIVANT R X. Applied logistic regression[M]. New York:John Wiley & Sons, lnc.,2013. [31] JUANG B H. On the hidden Markov model and dynamic time warping for speech recognition:A unified view[J]. AT & T Bell Laboratories Technical Journal,1984,63(7):1213-1243. [32] KROGH A,LARSSON B È,VON H G,et al. Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes[J]. Journal of Molecular Biology, 2001,305(3):567-580. [33] HEARST M A,DUMAIS S T,OSUNA E,et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998,13(4):18-28. [34] JOACHIMS T. Text categorization with support vector machines:Learning with many relevant features[C]//NEDELLEC C,ROUVEIROL C. Proceedings of the 10th European conference on machine learning. Heidelberg,Berlin:Springer-Verlag,1998:137-142. [35] CHANG C C,LIN C J. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology,2011,2(3):21-27. [36] CRISTIANINI N,SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridgeshire:Cambridge University Press,2000. [37] SCHOLKOPF B,SMOLA A J. Learning with kernels:Support vector machines,regularization,optimization,and beyond[M]. Cambridge,Massachusetts:MIT Press,2001. [38] KELLER J M,GRAY M R,GIVENS J A. A fuzzy k-nearest neighbor algorithm[J]. IEEE Transactions on Systems Man & Cybernetics,1985,15(4):580-585. [39] RÄTSCH G,ONODA T,MÜLLER K R. Soft margins for AdaBoost[J]. Machine Learning,2001,42:287-320. [40] HASTIE T,ROSSET S,ZHU Ji,et al. Multi-class AdaBoost[J]. Statistics and Its Interface,2009,2(3):349-360. [41] FRIEDMAN N,GEIGER D,GOLDSZMIDT M. Bayesian network classifiers[J]. Machine Learning,1997,29(2/3):131-163. [42] TSAMARDINOS I,BROWN L E,ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning,2006,65:31-78. [43] FRIEDL M A,BRODLEY C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment,1997,61(3):399-409. [44] LIAW A,WIENER M. Classification and regression by randomForest[J]. R News,2002,2/3:18-22. [45] RODRIGUEZ-GALIANO V F,GHIMIRE B,ROGAN J,et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2012,67:93-104. [46] LECUN Y,BENGIO Y. Convolutional networks for images, speech,and time-series[J]. The Handbook of Brain Theory and Neural Networks,1995,3361(10):1-14. [47] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[R]. Advances in Neural Information Processing Systems,2012:1097-1105. [48] GRAVES A,MOHAMED A,HINTON G. Speech recognition with deep recurrent neural networks[R]. Vancouver:The 38th IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2013. [49] WILLIAMS R J,ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation,1989,1(2):270-280. [50] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//GHAHRAMANI Z,WELLING M,CORTES C,et al. Proceedings of the 27th international conference on neural information processing systems-volume 2. Cambridge,Massachusetts:MIT Press,2014:2672-2680. [51] POULTON M M. Neural networks as an intelligence amplification tool:A review of applications[J]. Geophysics,2002,67(3):979-993. [52] MURAT M E,RUDMAN A J. Automated first arrival picking:A neural network approach[J]. Geophysical Prospecting,1992, 40(6):587-604. [53] MCCORMACK M D,ZAUCHA D E,DUSHEK D W. Firstbreak refraction event picking and seismic data trace editing using neural networks[J]. Geophysics,1993,58(1):67-78. [54] RÖTH G,TARANTOLA A. Neural networks and inversion of seismic data[J]. Journal of Geophysical Research:Solid Earth, 1994,99(B4):6753-6768. [55] CHU C K P,MENDEL J M. First break refraction event picking using fuzzy logic systems[J]. IEEE Transactions on Fuzzy Systems,1994,2(4):255-266. [56] DAI Hengchang,MACBETH C. Automatic picking of seismic arrivals in local earthquake data using an artificial neural network[J]. Geophysical Journal International,1995,120(3):758-774. [57] DAI Hengchang,MACBETH C. The application of back-propagation neural network to automatic picking seismic arrivals from single-component recordings[J]. Journal of Geophysical Research:Solid Earth,1997,102(B7):15105-15113. [58] WANG L X,MENDEL J M. Adaptive minimum prediction-error deconvolution and source wavelet estimation using Hopfield neural networks[R]. Toronto:The 16th International Conference on Acoustics,Speech,and Signal Processing,1991. [59] CALDERÓN-MACAS C,SEN M K,STOFFA P L. Automatic NMO correction and velocity estimation by a feedforward neural network[J]. Geophysics,1998,63(5):1696-1707. [60] HUANG Kouyuan,LIU W H,CHANG I C. Hopfield model of neural networks for detection of bright spots[R]. Dallas,Texas:SEG Annual Meeting,1989. [61] POULTON M M,STERNBERG B K,GLASS C E. Location of subsurface targets in geophysical data using neural networks[J]. Geophysics,1992,57(12):1534-1544. [62] 陆文凯,牟永光. 利用BP神经网络进行测井资料外推[J]. 石油地球物理勘探,1996,31(5):712-715.LU Wenkai,MOU Yongguang. Logging data extrapolation using BP neural network[J]. Oil Geophysical Prospecting,1996,31(5):712-715. [63] 陆文凯,牟永光. 神经网络子波反褶积[J]. 石油地球物理勘探,1996,32(增刊2):107-111. LU Wenkai,MOU Yongguang. Neural network wavelet deconvolution[J]. Oil Geophysical Prospecting,1996,32(Suppl 2):107-111. [64] 陆文凯,李衍达,牟永光. 误差反传播神经网络法地震反演[J]. 地球物理学报,1996,39(增刊1):292-301. LU Wenkai,LI Yanda,MOU Yongguang. Seismic inversion using error-back-propagation neural network[J]. Chinese Journal of Geophysics,1996,39(Suppl 1):292-301. [65] CALDERON-MACIAS C,SEN M K,STOFFA P L. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting,2000,48(1):21-47. [66] 朱广生,刘瑞林,王庭阁. 神经网络在油气层横向预测和地震道编辑中的应用[J]. 石油物探,1994,33(1):1-9. ZHU Guangsheng,LIU Ruilin,WANG Tingge. Application of neural network to reservoir lateral prediction and trace editing[J]. Geophysical Prospecting for Petroleum,1994,33(1):1-9. [67] FITZGERALD E M,BEAN C J,REILLY R. Fracture-frequency prediction from borehole wireline logs using artificial neural networks[J]. Geophysical Prospecting,1999,47(6):1031-1044. [68] BOADU F K. Inversion of fracture density from field seismic velocities using artificial neural networks[J]. Geophysics,1998, 63(2):534-545. [69] ALIMONTI C,FALCONE G. Knowledge discovery in databases and multiphase flow metering:The integration of statistics,data mining,neural networks,fuzzy logic,and ad hoc flow measurements towards well monitoring and diagnosis[R]. San Antonio,Texas:SPE Annual Technical Conference and Exhibition, 2002. [70] WILLIAM W,WEISS J W,XIE Xina. AI applied to evaluate waterflood response,gas behind pipe,and imbibition stimulation treatments[J]. Journal of Petroleum Science & Engineering,2005,49(3/4):110-121. [71] MAITI S,TIWARI R K,KÜMPEL H J. Neural network modelling and classification of lithofacies using well log data:A case study from KTB borehole site[J]. Geophysical Journal International,2007,169(2):733-746. [72] BARONIAN C,RIAHI M A,LUCAS C,et al. A theoretical approach to applicability of artificial neural networks for seismic velocity analysis[J]. Journal of Applied Sciences,2007,7:3659-3668. [73] MAITI S,TIWARI R K. Neural network modeling and an uncertainty analysis in Bayesian framework:A case study from the KTB borehole site[J]. Journal of Geophysical Research:Solid Earth,2010,115:B10208. [74] BADDARI K,DJARFOUR N,AÏFA T,et al. Acoustic impedance inversion by feedback artificial neural network[J]. Journal of Petroleum Science & Engineering,2010,71(3/4):106-111. [75] 杨午阳,王丛镔. 利用叠前AVA同步反演预测储层物性参数[J]. 石油地球物理勘探,2010,45(3):414-417. YANG Wuyang,WANG Congbin. Utilizing pre-stack simultaneous inversion to predict reservoir physical properties[J]. Oil Geophysical Prospecting,2010,45(3):414-417. [76] LI Haishan,YANG Wuyang,YONG Xueshan. Deep learning for ground-roll noise attenuation[R]. Anaheim,California:SEG International Exposition and 88th Annual Meeting,2018. [77] PHAM N,LI Weichang. Physics-constrained deep learning for ground roll attenuation[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2022,87(1):V15-V27. [78] OVCHARENKO O,KAZEI V,PETER D,et al. Dual-band generative learning for low-frequency extrapolation in seismic land data[R]. Denver:First International Meeting for Applied Geoscience & Energy,2021. [79] CHANG Dekuan,YANG Wuyang,YONG Xueshan,et al. Seismic fault detection using deep learning technology[R]. Beijing:CPS/SEG International Geophysical Conference & Exposition,2018. [80] GUITTON A. 3D convolutional neural networks for fault interpretation[R]. Copenhagen:The 80th EAGE Conference and Exhibition,2018. [81] ZHAO Tao,MUKHOPADHYAY P. A fault detection workflow using deep learning and image processing[R]. Anaheim,California:SEG International Exposition and 88th Annual Meeting, 2018. [82] XING Liyuan,AARRE V,THEOHARIS T. Improving faults continuity for extraction by transfer learning based on synthetic data[R]. Anaheim,California:SEG International Exposition and 88th Annual Meeting,2018. [83] DI Haibin,WANG Zhen,ALREGIB G. Seismic fault detection from post-stack amplitude by convolutional neural networks[R]. Copenhagen:80th EAGE Conference and Exhibition,2018. [84] WU Xinming,SHI Yunzhi,FOMEL S,et al. Convolutional neural networks for fault interpretation in seismic images[R]. Anaheim,California:SEG International Exposition and 88th Annual Meeting,2018. [85] GENG Zhicheng,WU Xinming,SHI Yunzhi,et al. Deep learning for relative geologic time and seismic horizons[J]. Geophysics,2020,85(4):WA87-WA100. [86] HADILOO S,RADAD M,MIRZAEI S,et al. Seismic facies analysis by ANFIS and fuzzy clustering methods to extract channel patterns[R]. Paris:79th EAGE Conference and Exhibition,2017. [87] ZHAO Tao,LI Fangyu,MARFURT K. Constraining self-organizing map facies analysis with stratigraphy:An approach to increase the credibility in automatic seismic facies classification[J]. Interpretation,2017,5(2):T163-T171. [88] DUAN Yanting,ZHENG Xiaodong,HU Lianlian. Seismic facies analysis based on deep encoder clustering[R]. Anaheim,California:SEG International Exposition and 88th Annual Meeting, 2018. [89] ZHAO Tao,LI Fangyu,MARFURT K. Automated input attribute weighting for unsupervised seismic facies analysis[R]. Houston,Texas:SEG International Exposition and 89th Annual Meeting,2017. [90] VEILLARD A,MORÈRE O,GROUT M,et al. Fast 3D seismic interpretation with unsupervised deep learning:ApplicationLU Wenkai,MOU Yongguang. Logging data extrapolation using BP neural network[J]. Oil Geophysical Prospecting,1996,31(5):712-715. [91] ZHANG Pengyu,SUN J M,JIANG Yanjiao,et al. Deep learning method for lithology identification from borehole images[R]. The 79th EAGE Conference and Exhibition,2017. [92] EMELYANOVA I,PERVUKHINA M,CLENNELL M,et al.Unsupervised identification of electrofacies employing machine learning[R]. The 79th EAGE Conference and Exhibition,2017. [93] BESTAGINI P,LIPARI V,TUBARO S. A machine learning approach to facies classification using well logs[R]. Houston,Texas:SEG International Exposition and 89th Annual Meeting,2017. [94] WU P Y,JAIN V,KULKARNI M S,et al. Machine learningbased method for automated well-log processing and interpretation[R].Anaheim,California:SEG International Exposition and88th Annual Meeting,2018. [95] DAS V,MUKERJI T. Petrophysical properties prediction from pre-stack seismic data using convolutional neural networks[J].Geophysics:Journal of the Society of Exploration Geophysicists,2020,85(5):N41-N55. [96] DU Jiameng,LIU Junzhou,ZHANG Guangzhi,et al. Pre-stack seismic inversion using SeisInv-ResNet[R]. San Antonio,Texas:SEG International Exposition and 89th Annual Meeting,2019. [97] ZHANG Tianze,SUN Jian,KRISTOPHER I,et al. A recurrent neural network for l1 anisotropic viscoelastic full waveform inversion with high-order total variation regularization[R]. Denver,Colorado:SEG International Exposition and 91st Annual Meeting,2021. [98] WANG Yuqing,GE Qiang,LU Wenkai,et al. Seismic impedance inversion based on cycle-consistent generative adversarial network[R]. San Antonio,Texas:SEG International Exposition and 89th Annual Meeting,2019. [99] YANG Yuxin,ZHANG Xitong,GUAN Qiang,et al. Enhancing data-driven seismic inversion using physics-guided spatiotemporal data augmentation[R]. Denver,Colorado:SEG International Exposition and 91st Annual Meeting,2021. [100] PHAN S,SEN M K. Deep learning with cross-shape deep Boltzmann machine for pre-stack inversion problem[R]. San Antonio,Texas:SEG International Exposition and 89th Annual Meeting,2019. [101] OH S,NOH K,YOON D,et al. Cooperative deep learning inversion:Seismic-constrained CSEM inversion for salt delineation[R]. San Antonio,Texas:SEG International Exposition and 89th Annual Meeting,2019. [102] KAUR H,PHAM N,FOMEL S. Estimating the inverse Hessian for amplitude correction of migrated images using deep learning[R]. San Antonio,Texas:SEG International Exposition and 89th Annual Meeting,2019. [103] SUN Jian,NIU Zhan,KRISTOPHER A. A theory-guided deep learning formulation of seismic waveform inversion[R]. San Antonio,Texas:SEG International Exposition and 89th Annual Meeting,2019. [104] ALFARRAJ M,ALREGIB G. Semi-supervised learning for acoustic impedance inversion[R]. San Antonio,Texas:SEG International Exposition and 89th Annual Meeting,2019. [105] ZHANG Wenyuan,STEWART R. Using FWI and deep learning to characterize velocity anomalies in crosswell seismic data[R]. San Antonio,Texas:SEG International Exposition and 89th Annual Meeting,2019. |
[1] | 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22. |
[2] | 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35. |
[3] | 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135. |
[4] | 桂金咏, 李胜军, 高建虎, 刘炳杨, 郭欣. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏, 2024, 36(2): 65-75. |
[5] | 郭海峰, 肖坤叶, 程晓东, 杜业波, 杜旭东, 倪国辉, 李贤兵, 计然. 乍得Bongor盆地花岗岩潜山裂缝型储层有效渗透率计算方法[J]. 岩性油气藏, 2023, 35(6): 117-126. |
[6] | 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158. |
[7] | 许鑫, 杨午阳, 张凯, 魏新建, 张向阳, 李海山. 三维初至波旅行时层析速度反演算法优化[J]. 岩性油气藏, 2023, 35(4): 79-89. |
[8] | 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120. |
[9] | 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128. |
[10] | 孙予舒, 黄芸, 梁婷, 季汉成, 向鹏飞, 徐新蓉. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别[J]. 岩性油气藏, 2020, 32(4): 98-106. |
[11] | 宋宣毅, 刘月田, 马晶, 王俊强, 孔祥明, 任兴南. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(2): 134-140. |
[12] | 陈可洋,陈树民,李来林,王建民,吴清岭,范兴才. 单频干扰的高精度自动识别和自适应压制方法[J]. 岩性油气藏, 2014, 26(3): 109-113. |
[13] | 陈可洋,吴清岭,李来林,范兴才,关昕,毕民. 松辽盆地三维地震资料连片处理关键技术及其应用效果分析[J]. 岩性油气藏, 2012, 24(2): 87-91. |
[14] | 冯磊. 利用地震资料时频特征分析沉积旋回[J]. 岩性油气藏, 2011, 23(2): 95-99. |
[15] | 熊翥. 地层岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(4): 1-8. |
|