岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 98–106.doi: 10.12108/yxyqc.20200410

• 勘探技术 • 上一篇    下一篇

基于XGBoost算法的复杂碳酸盐岩岩性测井识别

孙予舒1,2, 黄芸3, 梁婷1,2, 季汉成1,2, 向鹏飞1,2, 徐新蓉1,2   

  1. 1. 中国石油大学(北京)地球科学学院, 北京 102249;
    2. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    3. 中国石油华北油田分公司 勘探开发研究院, 河北 任丘 062550
  • 收稿日期:2019-09-12 修回日期:2019-11-29 出版日期:2020-08-01 发布日期:2020-06-16
  • 通讯作者: 季汉成(1966-),男,博士,教授,主要从事沉积学、储层地质学、石油地质学方面的教学和研究工作。Email:jihancheng@vip.sina.com。 E-mail:jihancheng@vip.sina.com
  • 作者简介:孙予舒(1994-),男,中国石油大学(北京)在读硕士研究生,研究方向为机器学习、沉积学及储层地质学。地址:(102249)北京市昌平区府学路18号。Email:sunyushu1022@163.com
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项“华北油田持续有效稳产勘探开发关键技术研究与应用”(编号:2017E-15)和“冀中凹陷下古生界潜山及内幕优势储层成因、演化及分布特征研究”(编号:HBYT-YJY-2018-JS-274)联合资助

Identification of complex carbonate lithology by logging based on XGBoost algorithm

SUN Yushu1,2, HUANG Yun3, LIANG Ting1,2, JI Hancheng1,2, XIANG Pengfei1,2, XU Xinrong1,2   

  1. 1. College of Geoscience, China University of Petroleum(Beijing), Beijing 102249, China;
    2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Research Institute of Exploration & Development, PetroChina Huabei Oilfield Company, Renqiu 062550, Hebei, China
  • Received:2019-09-12 Revised:2019-11-29 Online:2020-08-01 Published:2020-06-16

摘要: 碳酸盐岩储层在形成过程中受到多种因素的影响,储层岩性复杂多样,基于测井资料对碳酸盐岩岩性识别具有重要意义。为了解决传统的测井岩性识别方法和机器学习方法对于复杂碳酸盐岩岩性识别准确率不高的问题,以廊固凹陷北部奥陶系碳酸盐岩为例,将XGBoost算法应用于复杂碳酸盐岩岩性识别,并将模型的性能与决策树C4.5算法和支持向量机算法进行对比。结果表明,采用的XGBoost算法的岩性识别模型对研究区碳酸盐岩岩性识别的准确率达到了88.18%,相较于决策树C4.5算法和支持向量机算法准确率均提高了10%左右,且由于XGBoost算法采用多线程和分布式计算的方法,使得训练时间大大缩短。基于XGBoost算法建立的岩性识别模型能够有效地识别复杂碳酸盐岩岩性,为复杂碳酸盐岩岩性的测井识别提供了新的思路。

关键词: XGBoost算法, 机器学习, 碳酸盐岩, 岩性识别, 测井解释

Abstract: Carbonate reservoirs are affected by a variety of factors during the formation process,and the reservoir lithology is complex and diverse. Logging data are of great significance for carbonate lithology identification. In order to solve the problem that the traditional logging lithology identification method and traditional machine learning have low recognition accuracy for complex carbonate lithology,taking the Ordovician carbonate rocks in the northern Langgu Depression as an example, based on log data, XGBoost algorithm was appied to lithology identification of complex carbonate rocks,and the performance of the model was comparied with the decision tree C4.5 algorithm and the support vector machine algorithm. The results show that the lithology identification model based on XGBoost algorithm has an accuracy rate of 88.18% for the identification of carbonate lithology in the study area. Compared with decision tree C4.5 and support vector machine,the accuracy rate is increased by about 10%. And the XGBoost algorithm uses multi-threaded and distributed computing methods,the training time is greatly shortened. It shows that the lithology identification model established by XGBoost algorithm can effectively identify complex carbonate lithology and provide a new idea for logging identification of complex carbonate lithology.

Key words: XGBoost algorithm, machine learning, carbonate, lithology identification, log interpretation

中图分类号: 

  • P618.13
[1] 江凯, 王守东, 胡永静, 等. 基于Boosting Tree算法的测井岩性识别模型.测井技术, 2018, 42(4):396. JIANG K, WANG S D, HU Y J, et al. Lithology identification model by well logging based on boosting tree algorithm. Well Logging Technology, 2018, 42(4):396.
[2] 王瑞, 朱筱敏, 王礼常.用数据挖掘方法识别碳酸盐岩岩性. 测井技术, 2012, 36(2):197. WANG R, ZHU X M, WANG L C. Using data mining to identify carbonate lithology. Well Logging Technology, 2012, 36(2):197.
[3] 吴施楷, 曹俊兴.基于连续限制玻尔兹曼机的支持向量机岩性识别方法.地球物理学进展, 2016, 31(2):821-828. WU S K, CAO J X. Lithology identification method based on continuous restricted Boltzmann machine and support vector machine. Progress in Geophysics, 2016, 31(2):821-828.
[4] 杨冬.BP神经网络技术在碳酸盐岩岩性识别中的应用.石化技术, 2016, 23(1):58. YANG D. Application of BP neural network technology in carbonate lithology identification. Petrochemical Industry Technology, 2016, 23(1):58.
[5] 张翔, 肖小玲, 严良俊, 等.基于模糊支持向量机方法的岩性识别. 石油天然气学报(江汉石油学院学报), 2009, 31(6):115-118. ZHANG X, XIAO X L, YAN L J, et al. Lithologic identification based on fuzzy support vector machines. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2009, 31(6):115-118.
[6] 钟仪华, 李榕.基于主成分分析的最小二乘支持向量机岩性识别方法.测井技术, 2009, 33(5):425-429. ZHONG Y H, LI R. Application of principal component analysis and least square support vector machine to lithology identification. Well Logging Technology, 2009, 33(5):425-429.
[7] 赵忠军, 黄强东, 石林辉, 等.基于BP神经网络算法识别苏里格气田致密砂岩储层岩性.测井技术, 2015, 39(3):363-367. ZHAO Z J, HUANG Q D, SHI L H, et al. Identification of lithology in tight sandstone reservoir in Sulige Gas Field based on BP neural net algorithm. Well Logging Technology, 2015, 39(3):363-367.
[8] 范存辉, 梁则亮, 秦启荣, 等.基于测井参数的遗传BP神经网络识别火山岩岩性:以准噶尔盆地西北缘中拐凸起石炭系火山岩为例.石油天然气学报, 2012, 34(1):68-71. FAN C H, LIANG Z L, QIN Q R, et al. Identification of volcanic-rock lithology by using genetic BP neural network based on logging parameters:By taking carboniferous volcanic rocks in Zhongguai uplift of northwestern margin of Junggar Basin for instance. Journal of Oil and Gas Technology, 2012, 34(1):68-71.
[9] 王振洲, 张春雷, 高世臣.利用决策树方法识别复杂碳酸盐岩岩性:以苏里格气田苏东41-33区块为例.油气地质与采收率, 2017, 24(6):25-33. WANG Z Z, ZHANG C L, GAO S C. Lithology identification of complex carbonate rocks based on decision tree method:an example from block Sudong 41-33 in Sulige Gas Field. Petroleum Geology and Recovery Efficiency, 2017, 24(6):25-33.
[10] 仲鸿儒, 成育红, 林孟雄, 等.基于SOM和模糊识别的复杂碳酸盐岩岩性识别.岩性油气藏, 2019, 31(5):84-91. ZHONG H R, CHENG Y H, LIN M X, et al. Lithology identification of complex carbonate based on SOM and fuzzy recognition. Lithologic Reservoirs, 2019, 31(5):84-91.
[11] 马峥, 张春雷, 高世臣.主成分分析与模糊识别在岩性识别中的应用.岩性油气藏, 2017, 29(5):127-133. MA Z, ZHANG C L, GAO S C. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs, 2017, 29(5):127-133.
[12] 宋延杰, 王团, 付健, 等.雷64区块砂砾岩储层岩性识别方法研究.哈尔滨商业大学学报(自然科学版), 2015, 31(1):73-78. SONG Y J, WANG T, FU J, et al. Research on technology of lithology identification of sand-conglomerate rock in Lei 64. Journal of Harbin University of Commerce(Natural Sciences Edition), 2015, 31(1):73-78.
[13] 李洪奇, 谭锋奇, 许长福, 等.基于决策树方法的砾岩油藏岩性识别:以克拉玛依油田六中区克下组油藏为例.石油天然气学报(江汉石油学院学报), 2010, 32(3):73-79. LI H Q, TAN F Q, XU C F, et al. Lithological identification of conglomerate reservoirs base on decision tree method. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2010, 32(3):73-79.
[14] 李百强, 张小莉, 王起琮, 等.低渗-特低渗白云岩储层成岩相分析及测井识别:以伊陕斜坡马五段为例. 岩性油气藏, 2019, 31(5):70-83. LI B Q, ZHANG X L, WANG Q C, et al. Analysis and logging identification of diagenetic facies of dolomite reservoir with low and ultra-low permeability:a case study from Ma 5 memberin Yishan slope, Ordos Basin. Lithologic Reservoirs, 2019, 31(5):70-83.
[15] CHEN T Q, GUESTRIN C. XGBoost:a scalable tree boosting system. Proceedings of the 22 nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016:785-794.
[16] 刘宇, 乔木.基于聚类和XGboost算法的心脏病预测.计算机系统应用, 2019, 28(1):229. LIU Y, QIAO M. Heart disease prediction based on clustering and XGboost. Computer Systems & Applications, 2019, 28(1):229.
[17] FRIEDMAN J H. Greedy function approximation:a gradient boosting machine. The Annals of Statistics, 2001, 29(5):1189-1232.
[18] 李超, 张文辉, 林基明.基于XGBoost算法的恒星/星系分类研究.天文学报, 2019, 60(2):75. LI C, ZHANG W H, LIN J M. Research on star/galaxy classification based on XGBoost algorithm. Acta Astronomica Sinica, 2019, 60(2):75.
[19] 沈倩倩, 邵峰晶, 孙仁诚.基于XGBoost的乳腺癌预测模型. 青岛大学学报(自然科学版), 2019, 32(1):97. SHEN Q Q, SHAO F J, SUN R C. Prediction model of breast cancer based on XGBoost. Journal of Qingdao University (Natural Science Edition), 2019, 32(1):97.
[20] 罗菊兰, 陈彦竹, 高波, 等.基于矿物组合分类的碳酸盐岩储层岩性识别模型的建立.国外测井技术, 2018, 39(2):21-26. LUO J L, CHEN Y Z, GAO B, et al. Establishment of lithology recognition model for carbonate reservoir based on mineral assemblage classification. World Well Logging Technology, 2018, 39(2):21-26.
[21] 高雅琴, 谢润成, 吕志洲, 等.基于多元概率因子识别复杂碳酸盐岩岩性方法的应用.石化技术, 2018, 25(2):122-123. GAO Y Q, XIE R C, LYU Z Z, et al. The application of methods of identifying lithology of complex carbonate rocks based on multiple probability factor. Petrochemical Industry Technology, 2018, 25(2):122-123.
[22] 孙哲, 韦阿娟, 江尚昆, 等.元素录井技术在渤海潜山岩性识别中的应用.特种油气藏, 2017, 24(5):78-84. SUN Z, WEI A J, JIANG S K, et al. Application of element logging technology in identifying buried hill lithologies in Bohai Sea. Special Oil and Gas Reservoirs, 2017, 24(5):78-84.
[23] 关新, 陈世加, 苏旺, 等.四川盆地西北部栖霞组碳酸盐岩储层特征及主控因素.岩性油气藏, 2018, 30(2):67-76. GUAN X, CHEN S J, SU W, et al. Carbonate reservoir characteristics and main controlling factors of Middle Permian Qixia Formation in NW Sichuan Basin. Lithologic Reservoirs, 2018, 30(2):67-76.
[24] 刘冬冬, 杨东旭, 张子亚, 等.基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例.岩性油气藏, 2019, 31(3):76-85. LIU D D, YANG D X, ZHANG Z Y, et al. Fracture identification for tight reservoirs by conventional and imaging logging:a case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. Lithologic Reservoirs, 2019, 31(3):76-85.
[25] 杨柳, 王钰.泛化误差的各种交叉验证估计方法综述.计算机应用研究, 2015, 32(5):1288-1289. YANG L, WANG Y. Survey for various cross-validation estimators of generalization error. Application Research of Computers, 2015, 32(5):1288-1289.
[26] KHALID S, KHALIL T, NASREEN S. A survey of feature selection and feature extraction techniques in machine leaing. 2014 Science and Information Conference. London, UK, 2014:372-378.
[27] RAMASUBRAMANIAN K, SINGH A. Machine learning using R. New York:Apress, 2017:181-184.
[1] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[2] 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128.
[3] 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176.
[4] 黄芸, 杨德相, 李玉帮, 胡明毅, 季汉成, 樊杰, 张晓芳, 王元杰. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 70-80.
[5] 杨美华, 钟海全, 李颖川. 缝洞型碳酸盐岩油藏新型油藏生产指示曲线[J]. 岩性油气藏, 2021, 33(2): 163-170.
[6] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[7] 陈明江, 程亮, 陆涛. Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响[J]. 岩性油气藏, 2020, 32(3): 133-143.
[8] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[9] 宋宣毅, 刘月田, 马晶, 王俊强, 孔祥明, 任兴南. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(2): 134-140.
[10] 罗志锋, 黄静云, 何天舒, 韩明哲, 张锦涛. 碳酸盐岩储层酸压裂缝高度延伸规律——以川西栖霞组为例[J]. 岩性油气藏, 2020, 32(2): 169-176.
[11] 史文洋, 姚约东, 程时清, 顾少华, 石志良. 川西潮坪相裂缝型碳酸盐岩分层酸压井压力动态分析[J]. 岩性油气藏, 2020, 32(1): 152-160.
[12] 杨雨然, 张亚, 谢忱, 陈聪, 张晓丽, 陈双玲, 高兆龙. 川西北地区中二叠统栖霞组热液作用及其对储层的影响[J]. 岩性油气藏, 2019, 31(6): 44-53.
[13] 任文博. 流势调控在缝洞型碳酸盐岩油藏控水稳油中的应用[J]. 岩性油气藏, 2019, 31(6): 127-134.
[14] 孙亮, 李勇, 杨菁, 李保柱. 薄层底水碳酸盐岩油藏水平井含水上升模式及优化注水技术[J]. 岩性油气藏, 2019, 31(6): 135-144.
[15] 仲鸿儒, 成育红, 林孟雄, 高世臣, 仲婷婷. 基于SOM和模糊识别的复杂碳酸盐岩岩性识别[J]. 岩性油气藏, 2019, 31(5): 84-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .