岩性油气藏 ›› 2023, Vol. 35 ›› Issue (3): 99–109.doi: 10.12108/yxyqc.20230309

• 地质勘探 • 上一篇    下一篇

塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响

宋兴国1,2, 陈石1,2, 杨明慧1,2, 谢舟3, 康鹏飞3, 李婷3, 陈九洲3, 彭梓俊3   

  1. 1. 中国石油大学 (北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学 (北京)地球科学学院, 北京 102249;
    3. 中国石油塔里木油田公司, 新疆 库尔勒 841000
  • 收稿日期:2022-05-29 修回日期:2022-07-13 出版日期:2023-05-01 发布日期:2023-04-25
  • 通讯作者: 陈石(1986-),男,副教授,博士,主要从事含油气盆地构造分析方面的科研与教学工作。Email:chenshi4714@163.com。 E-mail:chenshi4714@163.com
  • 作者简介:宋兴国(1996—),男,中国石油大学(北京)在读博士研究生,研究方向为油区构造解析。地址:(102249)北京市昌平区府学路18号。Email:alexsong1996@126.com。
  • 基金资助:
    国家自然科学基金企业创新发展联合基金项目 “塔里木盆地超深层走滑断裂对碳酸盐岩缝洞储层的控制机理研究”(编号: U21-B2062) 资助。

Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution

SONG Xingguo1,2, CHEN Shi1,2, YANG Minghui1,2, XIE Zhou3, KANG Pengfei3, LI Ting3, CHEN Jiuzhou3, PENG Zijun3   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
  • Received:2022-05-29 Revised:2022-07-13 Online:2023-05-01 Published:2023-04-25

摘要: 利用三维地震、多层相干分析、振幅变化率、储层岩心分析及油气分布特征等资料,对塔里木盆地富满油田F16断裂的空间展布特征、活动强度及期次进行了分析,并探讨了断裂的控储控藏作用。研究结果表明:①富满油田F16断裂具有平面分段、垂向分层的特征。平面上由北往南可划分为3段,北段沿NE 10°展布,发育似马尾状构造;中段沿NE 20°展布,处于断裂走向转换部位,主要发育左阶斜列;南段沿NE 30°展布,具有强线性延伸特征,以右阶斜列为主;垂向上可划分为上寒武统底面以下的深部构造变形层和上寒武统底-奥陶系一间房组顶面浅部构造变形层,深层断裂活动较弱,分支发育较少,仅局部发育花状构造,浅层断裂活动强,花状构造普遍发育,且垂向上存在"多花叠置"及破碎带内地层同沉积的现象。②F16断裂在富满油田的活动主要发生于加里东早期和加里东中期,加里东中期为主要活动期,强度较大且具有多幕次特征;活动强度在平面上表现为"北强南弱",在垂向上表现出"浅层上拱、深层下降"的特征,浅层断裂活动更强烈。③研究区储层以断控缝洞型为主,受断裂破碎作用控制,平面上沿F16断裂带呈条带状分布,垂向上具有深浅分层叠置的特征;受中寒武统膏盐岩的分布影响,F16断裂带的油气分布具有"南油北气"的特征。

关键词: F16断裂, 走滑断裂, 断裂控储, 断裂控藏, 缝洞型碳酸盐岩储层, 上寒武统, 奥陶系一间房组, 富满油田, 塔里木盆地

Abstract: The data of 3D seismic,multi-layer coherence analysis,amplitude change rate,reservoir core analysis and oil and gas distribution were used to analyze the spatial distribution characteristics, activity intensity and stages of F16 fault in Fuman oilfield of Tarim Basin, and the control effects of fault on reservoir and accumulation were discussed. The results show that: (1)The F16 fault in Fuman oilfield has the characteristics of plane segmentation and vertical stratification. On plane, it can be divided into three segments from north to south,the northern segment spreads along NE 10° and develops horsetail-like structure,the middle segment spreads along NE 20° and is in the transition position of fault strike,mainly develops left-order oblique row,and the southern segment spreads along NE 30° with strong linear extension characteristics, mainly right-order oblique sequence. Vertically, it can be divided into deep structural deformation layer below the bottom of Upper Cambrian(TЄ3)and the shallow structural deformation layer of the bottom of Upper Cambrian to the top of Ordovician Yijianfang Formation (TO3t). The deep fault activity is weak, the branch is less developed, only the local flower structure is developed. While the shallow fault activity is strong,the flower structure is generally developed,and there exists the phenomenon of “multi-flower superposition” and stratigraphic co-deposition in the fracture zone vertically.(2)The activities of F16 fault in Fuman oilfield can be divided into two stages: early Caledonian and middle Caledonian. The middle Caledonian is the main active stage,with stronger intensity and multi-episode activation characteristics,and the activity intensity is strong in the north and weak in the south on plane, showing the characteristics of shallow upper arch and deep decline in the vertical direction,and the shallow fault activity is stronger.(3)The reservoirs in the study area are mainly fault-controlled fracture-cave reservoirs,controlled by fault fragmentation, distributed in a strip along the F16 fault zone on plane,and superimposed deep and shallow layers vertically. Affected by the distribution characteristics of Middle Cambrian gypsum salt rocks,the F16 fault zone has the oil and gas distribution characteristics of “south oil and north gas”.

Key words: F16 fault, strike-slip fault, fault-controlled reservoir, fault-controlled accumulation, fracture-vuggy carbonate reservoir, Upper Cambrian, Ordovician Yijianfang Formation, Fuman oilfield, Tarim Basin

中图分类号: 

  • TE122.2
[1] SYLVESTER A G. Strike slip fault[J]. Geological Society of America Bulletin, 1988, 100(11):1666-1703.
[2] 田军,杨海军,朱永峰,等.塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J].石油学报, 2021, 42(8):971-985. TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oil field, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8):971-985.
[3] 杨海军,邓兴梁,张银涛,等.塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J].中国石油勘探, 2020, 25(3):13-23. YANG Haijun, DENG Xingliang, ZHANG Yintao, et al. Great discovery and its significance of exploration for Ordovician ultradeep fault-controlled carbonate reservoirs of well Manshen 1 in Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3):13-23.
[4] HAN Xiaoying, TANG Liangjie, DENG Shang, et al. Spatial characteristics and controlling factors of the strike-slip fault zones in the northern slope of Tazhong Uplift, Tarim Basin:Insight from 3D seismic data[J]. Acta Geologica Sinica (English Edition), 2020, 94(2):516-529.
[5] YUAN Haowei, CHEN Shuping, NENG Yuan, et al. Composite strike-slip deformation belts and their control on oil and gas reservoirs:A case study of the northern part of the Shunbei 5 strike-slip deformation belt in Tarim Basin, northwestern China[J]. Frontiers in Earth Science, 2021, 9:755050.
[6] TENG Changyu, CAI Zhongxian, HAO Fang, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone:A case study from the north SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140:104159.
[7] 江同文,韩剑发,邬光辉,等.塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素[J].石油勘探与开发, 2020, 47(2):213-224. JIANG Tongwen, HAN Jianfa, WU Guanghui, et al. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2):213-224.
[8] 杨率,邬光辉,朱永峰,等.塔里木盆地北部地区超深断控油藏关键成藏期[J].石油勘探与开发, 2022, 49(2):1-13. YANG Shuai, WU Guanghui, ZHU Yongfeng, et al. Key oil accumulation periods of ultra-deep fault-controlled oil reservoir in northern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2):1-13.
[9] 汪如军,王轩,邓兴梁,等.走滑断裂对碳酸盐岩储层和油气藏的控制作用:以塔里木盆地北部坳陷为例[J].天然气工业, 2021, 41(3):10-20. WANG Rujun, WANG Xuan, DENG Xingliang, et al. Control effect of strike-slip faults on carbonate reservoirs and hydrocarbon accumulation:A case study of the northern depression in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3):10-20.
[10] 罗彩明,梁鑫鑫,黄少英,等.塔里木盆地塔中隆起走滑断裂的三层结构模型及其形成机制[J].石油与天然气地质, 2022, 43(1):118-131. LUO Caiming, LIANG Xinxin, HUANG Shaoying, et al. Threelayer structure model of strike-slip faults in the Tazhong uplift and its formation mechanism[J]. Oil&Gas Geology, 2022, 43(1):118-131.
[11] 能源,杨海军,邓兴梁.塔中古隆起碳酸盐岩断裂破碎带构造样式及其石油地质意义[J].石油勘探与开发, 2018, 45(1):40-50. NENG Yuan, YANG Haijun, DENG Xingliang. Structural patterns of fault broken zones in carbonate rocks and their influences on petroleum accumulation in Tazhong paleo-uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1):40-50.
[12] 何登发,贾承造,李德生,等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质, 2005, 26(1):64-77. HE Dengfa, JIA Chengzao, LI Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil&Gas Geology, 2005, 26(1):64-77.
[13] 贾承造.塔里木盆地构造特征与油气聚集规律[J].新疆石油地质, 1999, 20(3):3-9. JIA Chengzao. Structural characteristics and oil/gas accumulation regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3):3-9.
[14] 汤良杰.塔里木盆地构造演化与构造样式[J].地球科学——中国地质大学学报, 1994, 19(6):742-754. TANG Liangjie. Evolution and tectonic patterns of Tarim Basin[J]. Earth Science-Journal of China University of Geosciences, 1994, 19(6):742-754.
[15] 姜海健,陈强路,乔桂林,等.塔里木盆地中东部中下奥陶统颗粒滩发育特征及分布[J].岩性油气藏, 2017, 29(5):67-75. JIANG Haijian, CHEN Qianglu, Qiao Guilin, et al. Characteristics and distribution of Lower-Middle Ordovician grain bank in mid-eastern Tarim Basin[J]. Lithologic Reservoirs, 2017, 29(5):67-75.
[16] 彭军,夏梦,曹飞,等.塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J].岩性油气藏, 2022, 34(2):17-30. PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2):17-30.
[17] 王素英,张翔,田景春,等.塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J].岩性油气藏, 2021, 33(5):81-94. WANG Suying, ZHANG Xiang, TIAN Jingchun, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5):81-94.
[18] 倪新锋,陈永权,朱永进,等.塔北地区寒武纪深层白云岩构造-岩相古地理特征及勘探方向[J].岩性油气藏, 2015, 27(5):135-143. NI Xinfeng, CHEN Yongquan, ZHU Yongjin, et al. Tectoniclithofacies palaeogeography characteristics of Cambrian deep dolomite and exploration prospects in northern Tarim Basin[J]. Lithologic Reservoirs, 2015, 27(5):135-143.
[19] 安海亭,李海银,王建忠,等.塔北地区构造和演化特征及其对油气成藏的控制[J].大地构造与成矿学, 2009, 33(1):142-147. AN Haiting, LI Haiyin, WANG Jianzhong, et al. Tectonic evolution and its controlling on oil and gas accumulation in the northern Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1):142-147.
[20] 何登发,周新源,杨海军,等.塔里木盆地克拉通内古隆起的成因机制与构造类型[J].地学前缘, 2008, 15(2):207-221. HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2):207-221.
[21] 邬光辉,邓卫,黄少英,等.塔里木盆地构造-古地理演化[J].地质科学, 2020, 55(2):305-321. WU Guanghui, DENG Wei, HUANG Shaoying, et al. Tectonicpaleogeographic evolution in the Tarim Basin[J]. Chinese Journal of Geology, 2020, 55(2):305-321.
[22] 邬光辉,陈鑫,马兵山,等.塔里木盆地晚新元古代-早古生代板块构造环境及其构造-沉积响应[J].岩石学报, 2021, 37(8):2431-2441. WU Guanghui, CHEN Xin, MA Bingshan, et al. The tectonic environments of the Late Neoproterozoic-Early Paleozoic and its tectono-sedimentary response in the Tarim Basin[J]. Acta Petrologica Sinica, 2021, 37(8):2431-2441.
[23] 能源,邬光辉,黄少英,等.再论塔里木盆地古隆起的形成期与主控因素[J].天然气工业, 2016, 36(4):27-34. NENG Yuan, WU Guanghui, HUANG Shaoying, et al. Formation stage and controlling factors of the paleo-uplifts in the Tarim Basin:A further discussion[J]. Natural Gas Industry, 2016, 36(4):27-34.
[24] HE Bizhu, JIAO Cunli, XU Zhiqin, et al. The paleotectonic and paleogeography reconstructions of the Tarim Basin and its adjacent areas (NW China) during the late Early and Middle Paleozoic[J]. Gondwana Research, 2016, 30:191-206.
[25] LIN Changsong, YANG Haijun, LIU Jingyan, et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China:Significance for the evolution of paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46:1-19.
[26] 韩剑发,苏洲,陈利新,等.塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J].石油学报, 2019, 40(11):1296-1310. HAN Jianfa, SU Zhou, CHEN Lixin, et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11):1296-1310.
[27] 邬光辉.克拉通碳酸盐岩构造与油气:以塔里木为例[M].北京:科学出版社, 2016. WU Guanghui. The structural characteristics of carbonate rocks and their effects on hydrocarbon exploration in Craton Basin:A case study of the Tarim Basin[M]. Beijing:Science Press, 2016.
[28] 程飞.缝洞型碳酸盐岩油藏储层类型动静态识别方法:以塔里木盆地奥陶系为例[J].岩性油气藏, 2017, 29(3):76-82. CHENG Fei. Integrated dynamic and static identification method of fractured-vuggy carbonate reservoirs:A case from the Ordovician in Tarim Basin[J]. Lithologic Reservoirs, 2017, 29(3):76-82.
[29] 杨鹏飞,张丽娟,郑多明,等.塔里木盆地奥陶系碳酸盐岩大型缝洞集合体定量描述[J].岩性油气藏, 2013, 25(6):89-94. YANG Pengfei, ZHANG Lijuan, ZHENG Duoming, et al. Quantitative characterization of Ordovician carbonate fracture-cavity aggregate in Tarim Basin[J]. Lithologic Reservoirs, 2013, 25(6):89-94.
[30] 云露.顺北地区奥陶系超深断溶体油气成藏条件[J].新疆石油地质, 2021, 42(2):136-142. YUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2):136-142.
[1] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[2] 韩云浩, 姜振学, 张志遥, 朱光有. 含油气盆地超高油气柱形成的有利地质条件[J]. 岩性油气藏, 2023, 35(2): 125-135.
[3] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[4] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[5] 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
[6] 王素英, 张翔, 田景春, 彭明鸿, 郑潇宇, 夏永涛. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5): 81-94.
[7] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[8] 倪祥龙, 王建功, 郭佳佳, 杜斌山, 易定红, 龙国徽, 李志明, 惠媛媛. 柴达木盆地西南地区基底断裂的控藏作用与有利区带[J]. 岩性油气藏, 2019, 31(4): 32-41.
[9] 任大忠, 张晖, 周然, 王茜, 黄海, 唐胜蓝, 金娜. 塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究[J]. 岩性油气藏, 2018, 30(6): 27-36.
[10] 仲米虹, 唐武. 前陆盆地隆后坳陷区湖底扇沉积特征及主控因素——以塔北轮南地区三叠系为例[J]. 岩性油气藏, 2018, 30(5): 18-28.
[11] 田亮, 李佳玲, 焦保雷. 塔河油田12区奥陶系油藏溶洞充填机理及挖潜方向[J]. 岩性油气藏, 2018, 30(3): 52-60.
[12] 王晓丽, 林畅松, 焦存礼, 黄理力. 塔里木盆地中—上寒武统白云岩储层类型及发育模式[J]. 岩性油气藏, 2018, 30(1): 63-74.
[13] 姜海健, 陈强路, 乔桂林, 曹自成, 储呈林. 塔里木盆地中东部中下奥陶统颗粒滩发育特征及分布[J]. 岩性油气藏, 2017, 29(5): 67-75.
[14] 程飞. 缝洞型碳酸盐岩油藏储层类型动静态识别方法——以塔里木盆地奥陶系为例[J]. 岩性油气藏, 2017, 29(3): 76-82.
[15] 孟万斌,肖春晖,冯明石,傅 恒,曹自成,孙 茹. 碳酸盐岩成岩作用及其对储层的影响——以塔中顺南地区一间房组为例[J]. 岩性油气藏, 2016, 28(5): 26-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!