岩性油气藏 ›› 2024, Vol. 36 ›› Issue (3): 40–49.doi: 10.12108/yxyqc.20240304

• 地质勘探 • 上一篇    下一篇

改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用

宋志华1,2, 李垒2, 雷德文1, 张鑫1, 凌勋1   

  1. 1. 中国石油新疆油田公司 勘探事业部, 新疆 克拉玛依 834000;
    2. 成都理工大学地球物理学院, 成都 610059
  • 收稿日期:2023-01-13 修回日期:2023-03-17 出版日期:2024-05-01 发布日期:2024-04-30
  • 第一作者:宋志华(1988—),男,成都理工大学在读硕士研究生,研究方向为油气地球物理勘探。地址:(834000)新疆克拉玛依市克拉玛依区迎宾路66号。Email:szhihua@petrochina.com.cn。
  • 通信作者: 李垒(1996—),男,成都理工大学在读博士研究生,研究方向为油气地球物理勘探。Email:1986199274@qq.com。
  • 基金资助:
    国家自然科学基金“基于频变信息的流体识别及流体可动性预测”(编号:41774142)资助。

Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag

SONG Zhihua1,2, LI Lei2, LEI Dewen1, ZHANG Xin1, LING Xun1   

  1. 1. Exploration Division, PertoChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Received:2023-01-13 Revised:2023-03-17 Online:2024-05-01 Published:2024-04-30

摘要: 利用改进的 U-Net 网络小断层识别技术,对准噶尔盆地玛湖凹陷玛中地区三叠系白碱滩组的小断层进行了识别。研究结果表明:①构造导向滤波预处理能有效改善地震资料的品质,提高断层识别的准确率。加入了跳跃连接和中继监督、正态标准化和聚焦均方损失函数的 U-Net 网络方法,对小断层的精细识别能力有所提升。②使用 200 组训练样本集和 20 组验证样本集,模型地震数据由反射系数与雷克子波褶积生成,断层由人工标注而成。选取最优的网络模型参数,并在合成的含噪地震数据上分别利用相干属性、常规 U-Net 网络方法及改进的 U-Net 网络方法进行测试,构造导向滤波有效突出了断层的边界,且增强了同相轴的横向连续性,改进后的 U-Net 网络方法对于 7 m 以上断距的断层可进行有效识别。③对于玛湖凹陷玛中地区三叠系白碱滩组高角度走滑断裂和伴生小断距次级断裂的识别,改进后的 U-Net 网络方法的识别精度明显高于相干属性和常规 U-Net 网络方法,研究区大侏罗沟断裂北翼的③号与④号砂体,是拓展 MZ4 井区三叠系白碱滩组高效勘探的有利区。

关键词: U-Net网络, 断层识别, 高角度走滑断裂, 伴生小断距次级断裂, 正态标准化, 聚焦均方损失函数, 白碱滩组, 三叠系, 玛湖凹陷

Abstract: The small faults of Triassic Baijiantan Formation in Mazhong area of Mahu Sag in Junggar Basin were identified by using the improved U-Net network small fault identification technology. The results show that: (1)Construct-guided filtering preprocessing can effectively improve the quality of seismic data and increase the accuracy of fault identification. The U-Net network, which incorporatesskip connections, relay supervision, normal standardization, and focused mean square loss function, has improved its fine identification ability of small faults(. 2)Using 200 training sample sets and 20 validation sample sets, the seismic data of the model were generated by convolution of reflection coefficients and Ricker wavelet, and faults were manually labeled. Optimal network model parameters were selected to test on the synthesized noisy seismic data by using coherent attributes, conventional U-Net network methods, and the improved U-Net network method. Construct-guided filtering effectively highlighted the boundaries of faults and enhanced the lateral continuity of the same phase axis. The improved U-Net network method can effectively identify faults with a fault distance of more than 7 meters.(3)The improved U-Net network method has significantly higher accuracy than coherent attributes and conventional UNet network methods in identifying high-angle strike-slip faults and associated secondary faults with small fault throw of Triassic Baijiantan Formation in Mazhong area of Mahu Sag. The No. 3 and No. 4 sand bodies in the northern Dazhuluogou fault in the study area are favorable areas for efficient exploration of Triassic Baijiantan Formation in MZ4 well area.

Key words: U-Net network, fault identification, high-angle strike-slip fault, associated secondary faults with small fault throw, normal standardization, focused mean square loss function, Baijiantan Formation, Triassic, Mahu Sag

中图分类号: 

  • TE319
[1] 陈永波,程晓敢,张寒,等. 玛湖凹陷斜坡区中浅层断裂特征及其控藏作用[J]. 石油勘探与开发,2018,45(6):985-994. CHEN Yongbo,CHENG Xiaogan,ZHANG Han,et al. Fault characteristics and control on hydrocarbon accumulation of middle-shallow layers in the slope zone of Mahu sag,Junggar Basin,NW China[J]. Petroleum Exploration and Development,2018,45(6):985-994.
[2] GERSZTENKORN A,Marfurt K J. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[J]. Geophysics,1999,64(5):1468-1479.
[3] 姜良国,刘书会,杨培杰. 振幅曲率属性在浅层河道砂体描述中的应用[J]. 工程地球物理学报,2018,15(1):73-78. JIANG Liangguo,LIU Shuhui,YANG Peijie. The application of amplitude curvature attributes to description of shallow river channel sand bodies[J]. Chinese Journal of Engineering Geophysics,2018,15(1):73-78.
[4] 尹成,彭浩,赵虎,等. 薄砂体重叠带与小断层的地震多属性联合识别方法研究[J].石油物探,2022,61(4):625-634. YIN Cheng,PENG Hao,ZHAO Hu,et al. Identifying small fault and overlap strip of thin sand body based on seismic multiattribute analysis[J]. Geophysical Prospecting for Petroleum, 2022,61(4):625-634.
[5] 张璐,何峰,陈晓智,等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏,2020,32(2):108-114. ZHANG Lu,HE Feng,CHEN Xiaozhi,et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control[J]. Lithologic Reservoirs, 2020,32(2):108-114.
[6] 王建君,李井亮,李林,等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J]. 岩性油气藏,2020,32(5):122-132. WANG Jianjun,LI Jingliang,LI Lin,et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area[J]. Lithologic Reservoirs,2020,32(5):122-132.
[7] 李婷婷,侯思宇,马世忠,等. 断层识别方法综述及研究进展[J]. 地球物理学进展,2018,33(4):1507-1514. LI Tingting,HOU Siyu,MA Shizhong,et al. Overview and research progress of fault identification method[J]. Progress in Geophysics,2018,33(4):1507-1514.
[8] 王俊,曹俊兴,尤加春,等. 基于门控循环单元神经网络的储层孔渗饱参数预测[J].石油物探,2020,59(4):616-627. WANG Jun,CAO Junxing,YOU Jiachun,et al. Prediction of reservoir porosity,permeability and saturation parameters based on a gated recurrent unit neural network[J]. Geophysical Prospecting for Petroleum,2020,59(4):616-627.
[9] 余里辉. 基于卷积神经网络的断层曲面提取与重建[D]. 成都:电子科技大学,2018. YU Lihui. Extraction and reconstruction of fault surface based on convolutional neural network[D]. Chengdu:University of Electronic Science and Technology of China,2018.
[10] 段艳廷,郑晓东,胡莲莲,等. 基于3D半密度卷积神经网络的断裂检测[J].地球物理学进展,2019,34(6):2256-2261. DUAN Yanting,ZHENG Xiaodong,HU Lianlian,et al. Fault detection based on 3D semi-dense convolutional neural network[J]. Progress in Geophysics,2019,34(6):2256-2261.
[11] WU Xinming,LIANG Luming,SHI Yunzhi,et al. FaultSegD:Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics,2019,84(3):35-45.
[12] WU Xinming,LIANG Luming,SHI Yunzhi,et al. Multitask learning for local seismic image processing:Fault detection, structure-oriented smoothing with edge-preserving,and seismic normal estimation by using a single convolutional neural network[J]. Geophysical Journal International,2019,219(3):2097-2109.
[13] 陈芊澍,文晓涛,何健,等. 基于极限学习机的裂缝带预测[J]. 石油物探,2021,60(1):149-174. CHEN Qianshu,WEN Xiaotao,HE Jian,et al. Prediction of a fracture zone using an extreme learning machine[J].Geophysical Prospecting for Petroleum,2021,60(1):149-174.
[14] 白雨,汪飞,牛志杰,等. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏,2022,34(4):116-127. BAI Yu,WANG Fei,NIU Zhijie,et al. Hydrocarbon generation kinetics of source rocks of Permian Fengcheng Formation in Mahu Sag,Junggar Basin[J]. Lithologic Reservoirs,2022,34(4):116-127.
[15] 陈静,陈军,李卉,等. 准噶尔盆地玛中地区二叠系-三叠系叠合成藏特征及主控因素[J]. 岩性油气藏,2021,33(1):71-80. CHEN Jing,CHEN Jun,LI Hui,et al. Characteristics and main controlling factors of Permian-Triassic superimposed reservoirs in central Mahu Sag,Junggar Basin[J]. Lithologic Reservoirs, 2021,33(1):71-80.
[16] 文晓涛,贺锡雷,黄德济,等. 提高地震剖面横向分辨率与压制噪音的试验研究[J]. 物探化探计算技术,2003,25(1):22-25. WEN Xiaotao,HE Xilei,HUANG Deji,et al. Trial on improving horizontal resolution and attenuating noise in seismic section[J].Computing Technique for Geophysical and Geochemical Exploration,2003,25(1):22-25.
[17] 陈常乐. 地震波场构造导向滤波关键技术及应用[D]. 长春:吉林大学,2015. CHEN Changle. Key technology and application of structureoriented filter for seismic wave field[D]. Changchun:Jilin University,2015.
[18] 蔡魁杰. 地震数据处理中局部倾角的估计与应用[D]. 哈尔滨:哈尔滨工业大学,2019. CAI Kuijie. Estimation and applications of local dips in seismic data processing[D]. Harbin:Harbin Institute of Technology,2019.
[19] 崔正伟,程冰洁,徐天吉,等. 基于构造导向滤波与梯度结构张量相干属性的储层裂缝预测方法及应用[J]. 石油地球物理勘探,2021,56(3):555-563. CUI Zhengwei,CHENG Bingjie,XU Tianji,et al. Reservoir fracture prediction method and application based on structureoriented filtering and coherent attributes of gradient structure tensor[J]. Oil Geophysical Prospecting,2021,56(3):555-563.
[20] 石战战,贺振华,文晓涛,等. 基于复数域非线性各向异性扩散滤波的裂缝检测方法[J]. 石油地球物理勘探,2012,47(2):286-290. SHI Zhanzhan,HE Zhenhua,WEN Xiaotao,et al. A fractural detection method based on nonlinear complex anisotropic diffusion filtering[J]. Oil Geophysical Prospecting,2012,47(2):286-290.
[21] 刘璞. 结构导向滤波研究与运用[D]. 成都:成都理工大学, 2014. LIU Pu. Research and application of stucture-oriented filtering[D]. Chengdu:Chengdu University of Technology,2014.
[22] 黄伟. 基于拓频的多阶复数域各向异性扩散滤波[D]. 成都:成都理工大学,2020. HUANG Wei. Multi-level complex-domain anisotropic diffusion filtering based on frequency expanding[D]. Chengdu:Chengdu University of Technology,2020.
[23] WANG Kexian,ZHENG Shunyi,LI Rui,et al. A deep doublechannel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science,2021,4(4):46-62.
[24] 韩卫雪,周亚同,池越. 基于深度学习卷积神经网络的地震数据随机噪声去除[J]. 石油物探,2018,57(6):862-877. HAN Weixue,ZHOU Yatong,CHI Yue. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Geophysical Prospecting for Petroleum,2018,57(6):862-877.
[25] 刘建伟,赵会丹,罗雄麟,等. 深度学习批归一化及其相关算法研究进展[J]. 自动化学报,2020,46(6):1090-1120. LIU Jianwei,ZHAO Huidan,LUO Xionglin,et al. Research progress on batch normalization of deep learning and its related algorithms[J].Acta Automatica Sinica,2020,46(6):1090-1120.
[26] 王锦涛,文晓涛,何易龙,等. 基于CNN-GRU神经网络的测井曲线预测方法[J]. 石油物探,2022,61(2):276-285. WANG Jintao,WEN Xiaotao,HE Yilong,et al. Logging curve prediction based on CNN-GRU neural network[J]. Geophysical Prospecting for Petroleum,2022,61(2):276-285.
[27] 徐锐,冯瑞. 卷积神经网络的聚焦均方损失函数设计[J]. 计算机系统应用,2020,29(10):133-140. XU Rui,FENG Rui. Focused mean square loss function design in convolutional neural network[J]. Computer System & Application,2020,29(10):133-140.
[28] 余兴,尤新才,白雨,等. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏,2021,33(1):81-89. YU Xing,YOU Xincai,BAI Yu,et al. Identification of faults in the south slope of Mahu Sag and its control on hydrocarbon accumulation[J]. Lithologic Reservoirs,2021,33(1):81-89.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[3] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[4] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[5] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[6] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[7] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[8] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[9] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[10] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[11] 尹艳树, 丁文刚, 安小平, 徐振华. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49.
[12] 覃建华, 王建国, 李思远, 李胜, 窦智, 彭仕宓. 玛湖凹陷三叠系百口泉组致密砾岩储层水力裂缝特征及形成机制[J]. 岩性油气藏, 2023, 35(4): 29-36.
[13] 薛楠, 邵晓州, 朱光有, 张文选, 齐亚林, 张晓磊, 欧阳思琪, 王淑敏. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境[J]. 岩性油气藏, 2023, 35(3): 51-65.
[14] 文雯, 杨西燕, 向曼, 陶夏妍, 杨容, 李阳, 范家兴, 蒲柏宇. 四川盆地开江—梁平海槽东侧三叠系飞仙关组鲕滩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(2): 68-79.
[15] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .