岩性油气藏 ›› 2023, Vol. 35 ›› Issue (4): 2936.doi: 10.12108/yxyqc.20230403
覃建华1, 王建国2, 李思远1, 李胜1, 窦智2,3, 彭仕宓2
QIN Jianhua1, WANG Jianguo2, LI Siyuan1, LI Sheng1, DOU Zhi2,3, PENG Simi2
摘要: 水力裂缝的分布规律对致密砾岩油藏高效开发至关重要。通过对玛湖凹陷已压裂砾岩油区的水平取心井MaJ02井的岩心裂缝观察,剖析了玛湖凹陷三叠系百口泉组致密砾岩储层中水力裂缝的类型、产状、组系、开度、密度及支撑剂充填情况,明确了其分布特征,并探讨了其形成机制。研究结果表明: ①玛湖凹陷MaJ02井百口泉组岩心中发育的水力裂缝条数占总裂缝数的77.6%,走向为90°~110°,倾角为70°~90°。②研究区主要发育以走滑机制形成的剪切缝,占比为65.8%,其次为张应力形成的张性缝,占比为34.2%。剪切缝多成组出现,开度较小,多为全充填,裂缝面以“穿砾”为主,多条裂缝叠加而形成缝网破碎带;而张性缝多为单条出现,开度相对较大,裂缝面不规则,为全充填或半充填,裂缝面以“绕砾”为主。③研究区取心井与已压裂井距离越小,压裂段射孔簇间距越小,水力裂缝密度越大。在压裂工程条件相同的情况下,泥质支撑漂浮砾岩相和前缘席状砂微相的裂缝相对发育,砂质含量越高,水力裂缝密度越大。
中图分类号:
[1] 唐勇,曹剑,何文军,等.从玛湖大油区发现看全油气系统地质理论发展趋势[J].新疆石油地质, 2021, 42(1):1-9. TANG Yong, CAO Jian, HE Wenjun, et al. Development tendency of geological theory of total petroleum system:Insights from the discovery of Mahu large oil province[J]. Xinjiang Petroleum Geology, 2021, 42(1):1-9. [2] 陈静,陈军,李卉,等.准噶尔盆地玛中地区二叠系-三叠系叠合成藏特征及主控因素[J].岩性油气藏, 2021, 33(1):71-80. CHEN Jing, CHEN Jun, LI Hui, et al. Characteristics and main controlling factors of Permian-Triassic superimposed reservoirs in central Mahu Sag, Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(1):71-80. [3] 张昌民,刘江艳,潘进,等.玛湖凹陷百口泉组砂砾岩建筑结构要素层次分析[J].新疆石油地质, 2018, 39(1):23-34. ZHANG Changmin, LIU Jiangyan, PAN Jin, et al. Hierarchical architectural element analysis for sandy conglomerate deposits of Baikouquan Formation, Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):23-34. [4] 杜猛,向勇,贾宁洪,等.玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J].岩性油气藏, 2021, 33(5):120-131. DU Meng, XIANG Yong, JIA Ninghong, et al. Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag[J]. Lithologic Reservoirs, 2021, 33(5):120-131. [5] 李国欣,覃建华,鲜成钢,等.致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例[J].石油勘探与开发, 2020, 47(6):1185-1197. LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development:A case study of the Mahu oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6):1185-1197. [6] 赵超峰,贾振甲,田建涛,等.基于井中微地震监测方法的压裂效果评价:以吉林探区Y22井为例[J].岩性油气藏, 2020, 32(2):161-168. ZHAO Chaofeng, JIA Zhenjia, TIAN Jiantao, et al. Fracturing effect evaluation based on borehole microseismic monitoring method:A case study from well Y22 in Jilin exploration area[J]. Lithologic Reservoirs, 2020, 32(2):161-168. [7] LIN Menglu, CHEN Shengnan, DING Wei, et al. Effect of fracture geometry on well production in hydraulic-fractured tight oil reservoirs[J]. Journal of Canadian Petroleum Technology, 2015, 54(3):183-194. [8] URBAN-RASCON E,AGUILERA R. Hydraulic fracturing modeling, fracture network, and microseismic monitoring[C]. Calgary:SPE Canada Unconventional Resources Conference, 2020. [9] CIEZOBKA J, REEVES S. Overview of hydraulic fracturing test sites (HFTS) in the Permian basin and summary of selected results (HFTS-I in Midland and HFTS-Ⅱ in Delaware)[C]. Online:Latin America Unconventional Resources Technology Conference, 2020. [10] RASSENFOSS S. A look into what fractures really look like[J]. Journal of Petroleum Technology, 2018, 70(11):28-36. [11] MAITY D, CIEZOBKA J. Digital fracture characterization at hydraulic fracturing test site HFTS-Midland:Fracture clustering, stress effects and lithologic controls[C]. Online:SPE Hydraulic Fracturing Technology Conference and Exhibition, 2021. [12] WANG Shugang,TAN Yunhui,SANGNIMNUAN A,et al. Learnings from the hydraulic fracturing test site (HFTS)#1, Midland Basin, West Texas:A geomechanics perspective[C]. Denver:Unconventional Resources Technology Conference, 2019. [13] ZHAO Yu, BESSA F, SAHNI V, et al. Key learnings from hydraulic fracturing test site-2(HFTS-2), Delaware Basin[C]. Houston:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2021. [14] PUDUGRAMAM V S, ZHAO Y, BESSA F, et al. Analysis and integration of the hydraulic fracturing test site-2(HFTS-2) comprehensive dataset[C]. Houston:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2021. [15] SALAHSHOOR S. Analysis and Interpretation of multi-source data at the hydraulic fracturing test site:A data-driven approach to improve well performance evaluation in heterogeneous formations[C]. Online:Unconventional Resources Technology Conference, 2020:11. [16] 牛小兵,冯胜斌,尤源,等.致密储层体积压裂作用范围及裂缝分布模式:基于压裂后实际取心资料[J].石油与天然气地质, 2019, 40(3):669-677. NIU Xiaobing, FENG Shengbin, YOU Yuan, et al. Fracture extension and distribution pattern of volume fracturing in tight reservoir:An analysis based on actual coring data after fracturing[J]. Oil&Gas Geology, 2019, 40(3):669-677. [17] 支东明,唐勇,郑孟林,等.玛湖凹陷源上砾岩大油区形成分布与勘探实践[J].新疆石油地质, 2018, 39(1):1-8. ZHI Dongming, TANG Yong, ZHENG Menglin, et al. Discovery, distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):1-8. [18] 余兴,尤新才,白雨,等.玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J].岩性油气藏, 2021, 33(1):81-89. YU Xing, YOU Xincai, BAI Yu, et al. Identification of faults in the south slope of Mahu Sag and its control on hydrocarbon accumulation[J]. Lithologic Reservoirs, 2021, 33(1):81-89. [19] 宋永,周路,吴勇,等.准噶尔盆地玛东地区百口泉组多物源砂体分布预测[J].新疆石油地质, 2019, 40(6):631-637. SONG Yong, ZHOU Lu, WU Yong, et al. Prediction of multiprovenance sand body distribution in Triassic Baikouquan Formation of Madong area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(6):631-637. [20] 唐勇,徐洋,李亚哲,等.玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义[J].新疆石油地质, 2018, 39(1):16-22. TANG Yong, XU Yang, LI Yazhe, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):16-22. [21] 刘敬寿,戴俊生,王珂,等.斜井岩心裂缝产状校正方法及其应用[J].石油学报, 2015, 36(1):67-73. LIU Jingshou, DAI Junsheng, WANG Ke, et al. An approach to correct the core fracture attitude in deviated boreholes and its application[J]. Acta Petrolei Sinica, 2015, 36(1):67-73. [22] 杨帆,卞保力,刘慧颖,等.玛湖凹陷二叠系夏子街组限制性湖盆扇三角洲沉积特征[J].岩性油气藏, 2022, 34(5):63-72. YANG Fan, BIAN Baoli, LIU Huiying, et al. Sedimentary characteristics of fan delta in restricted lacustrine basin of Permian Xiazijie Formation in Mahu Sag[J]. Lithologic Reservoirs, 2022, 34(5):63-72. |
[1] | 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22. |
[2] | 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121. |
[3] | 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159. |
[4] | 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155. |
[5] | 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144. |
[6] | 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84. |
[7] | 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49. |
[8] | 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171. |
[9] | 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110. |
[10] | 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68. |
[11] | 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156. |
[12] | 尹艳树, 丁文刚, 安小平, 徐振华. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49. |
[13] | 薛楠, 邵晓州, 朱光有, 张文选, 齐亚林, 张晓磊, 欧阳思琪, 王淑敏. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境[J]. 岩性油气藏, 2023, 35(3): 51-65. |
[14] | 文雯, 杨西燕, 向曼, 陶夏妍, 杨容, 李阳, 范家兴, 蒲柏宇. 四川盆地开江—梁平海槽东侧三叠系飞仙关组鲕滩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(2): 68-79. |
[15] | 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93. |
|