岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 125–135.doi: 10.12108/yxyqc.20230212

• 地质勘探 • 上一篇    下一篇

含油气盆地超高油气柱形成的有利地质条件

韩云浩1, 姜振学1, 张志遥2, 朱光有2   

  1. 1. 中国石油大学(北京)非常规油气科学技术研究院, 北京 102249;
    2. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2022-09-02 修回日期:2022-09-22 出版日期:2023-03-01 发布日期:2023-03-07
  • 通讯作者: 朱光有(1973-),男,博士,教授级高工,主要从事油气地质与地球化学方面的研究工作。Email:zhuguangyou@petrochina.com.cn。 E-mail:zhuguangyou@petrochina.com.cn
  • 作者简介:韩云浩(1998-),男,中国石油大学(北京)在读硕士研究生,研究方向为非常规油气地质评价。地址:(102249)北京市昌平区中国石油大学(北京)。Email:HanYunHaoJY@163.com。
  • 基金资助:
    国家自然科学基金项目“陆相页岩储层岩石组构和孔隙结构特征及其对含气性的控制机理”(编号:41872135)资助。

Favorable geological conditions for the formation of ultra-high petroleum columns in petroliferous basins

HAN Yunhao1, JIANG Zhenxue1, ZHANG Zhiyao2, ZHU Guangyou2   

  1. 1. Unconventional Natural Gas Institute, China University of Petroleum, Beijing 102249, China;
    2. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
  • Received:2022-09-02 Revised:2022-09-22 Online:2023-03-01 Published:2023-03-07

摘要: 油气柱的高度是决定油气富集程度的重要指标之一。通过梳理全球各大含油气盆地油气成藏方面的相关资料,对发育有超高油气柱的含油气盆地进行了系统分析,结合其油气供给能力、储盖组合特征以及油气运移方式等,综合分析了含油气盆地内超高油气柱形成的有利地质条件。研究结果表明:①全球发育的具有超高油气柱的油气田以碳酸盐岩层系居多,约占78%,这是由于碳酸盐岩层系相对更易于发育巨厚叠置型的有利储集体,有利于形成超高油气柱。国外典型地区包括波斯湾、滨里海及西西伯利亚盆地等,我国主要分布在四川、渤海湾及塔里木等盆地。②超高油气柱形成的有利条件包括充足的油气供给、纵向叠置发育的巨厚储层、广覆式发育的盖层、纵向网式输导体系、有利的运移条件以及良好的源储匹配关系等6个方面。③塔里木盆地深层也发现了许多超高油气柱,以富满油田为例,下寒武统烃源岩充足的油气供给、中上奥陶统巨厚的礁灰岩储层和致密的泥岩盖层,以及深大断裂等有利的运移条件,是该地区能够形成超高油气柱的主要原因。

关键词: 充足油源, 巨厚储层, 优质盖层, 网式输导体系, 油气运移, 源储配置, 超高油气柱, 富满油田, 超深层, 含油气盆地

Abstract: Petroleum column height is one of the important indicators to determine the degree of hydrocarbon enrichment. Based on the data of hydrocarbon accumulation in major petroliferous basins worldwide, a systematic analysis of petroliferous basins with ultra-high petroleum columns was conducted. The favorable geological conditions for the formation of ultra-high petroleum columns in petroliferous basins were analyzed in combination with hydrocarbon supply capacity, reservoir-cap assemblages and hydrocarbon migration patterns. The results show that:(1) Most of the typical oil and gas fields in the world with ultra-high petroleum columns are dominated by carbonate formations, accounting for 78% of the total. This is because carbonate formations are relatively easy to develop large-thickness stacked reservoirs, which are conducive to the formation of ultra-high petroleum columns.Typical oil and gas fields with ultra-high petroleum columns abroad are mainly distributed in Persian Gulf Basin, Pre-Caspian Basin and Western Siberian Basin, while mainly distributed in Sichuan Basin, Bohai Bay Basin and Tarim Basin in China.(2) The favorable conditions for the formation of ultra-high petroleum columns include sufficient hydrocarbon supply, vertically stacked large-thickness reservoirs, extensive overlying caprocks, vertical network transport system, favorable migration conditions and good source-reservoir configuration.(3) Many ultrahigh petroleum columns have been found in the deep strata of Tarim Basin. Taking the Fuman oilfield as an example, the sufficient hydrocarbon supply from the Lower Cambrian source rocks, the thick reef tuff reservoirs and tight mudstone caprock of Middle and Upper Ordovician, and the favorable migration conditions such as deep and large faults, are the main reasons for the formation of ultra-high petroleum columns in this area.

Key words: sufficient hydrocarbon supply, large-thickness reservoir, high-quality caprock, network transport system, hydrocarbon migration, source-reservoir configuration, ultra-high petroleum columns, Fuman oilfield, ultra-deep strata, petroliferous basin

中图分类号: 

  • TE122.1
[1] 王建强, 梁杰, 陈建文, 等. 波斯湾地区油气田形成条件、勘探潜力及中国油公司发展对策[J].地球科学与环境学报, 2022, 44(2):298-311. WANG Jianqiang, LIANG Jie, CHEN Jianwen, et al. Formation conditions and exploration potential of oil-gas fields in Persian Gulf region and development countermearsure of Chinese oil corporations[J]. Journal of Earth Science and Environment, 2022, 44(2):298-311.
[2] 杨泽光, 冯志强, 王爱国, 等. 波斯湾盆地主力烃源岩特征及成因主控因素[J].海洋石油, 2022, 42(1):1-12. YANG Zeguang, FENG Zhiqiang, WANG Aiguo, et al. Characteristics and dominating genesis factors of main source rocks in Persian Gulf Basin[J]. Offshore Oil, 2022, 42(1):1-12.
[3] VYSSOTSKI A V, VYSSOTSKI V N, NEZHDANOV A A. Evolution of the West Siberian Basin[J]. Marine and Petroleum Geology, 2006, 23(1):93-126.
[4] HUVAZ O, SARIKAYA H, IŞIK T. Petroleum systems and hydrocarbon potential analysis of the northwestern Uralsk basin, NW Kazakhstan, by utilizing 3 D basin modeling methods[J]. Marine and Petroleum Geology, 2007, 24(4):247-275.
[5] 贺正军, 温志新, 王兆明, 等. 西西伯利亚大型裂谷盆地侏罗系-白垩系成藏组合与有利勘探领域[J]. 海相油气地质, 2020, 25(1):70-78. HE Zhengjun, WEN Zhixin, WANG Zhaoming, et al. Reservoir forming assemblages and favorable exploration fields of JurassicCretaceous in the West Siberian giant rift basin[J]. Marine Origin Petroleum Geology, 2020, 25(1):70-78.
[6] 李晶, 孙婧, 陶明信. 全球油气探明储量与大油气田的分布及地质构造背景[J]. 天然气地球科学, 2012, 23(2):259-267. LI Jing, SUN Jing, TAO Mingxin. Correlation of globally proved oilgas reserves and distribution of giant size oil-gas fields and geotectonic settings[J]. Natural Gas Geoscience, 2012, 23(2):259-267.
[7] LABOUN A A. Regional tectonic and megadepositional cycles of the Paleozoic of northwestern and central Saudi Arabia[J]. Arabian Journal of Geosciences, 2013, 6(4):971-984.
[8] 贾承造, 周新源, 王招明, 等. 克拉2气田石油地质特征[J]. 科学通报, 2002, 47(增刊1):91-96. JIA Chengzao, ZHOU Xinyuan, WANG Zhaoming, et al. Petroleum geological characteristics of Kera 2 gas field[J]. Science Bulletin, 2002, 47(Suppl 1):91-96.
[9] 廖康涔, 陈轩, 李剑锋, 等. 普光气田飞仙关组滩相储层微观孔隙结构特征分析[J].当代化工, 2020, 49(9):2005-2010. LIAO Kangcen, CHEN Xuan, LI Jianfeng, et al. Analysis on microcosmic pore structure characteristics of beach facies reservoir of Feixianguan Formation in Puguang gas field[J]. Contemporary Chemical Industry, 2020, 49(9):2005-2010.
[10] 尹邦堂, 李相方, 李佳, 等. 巨厚高产强非均质气藏产能评价方法:以普光、大北气田为例[J].天然气工业, 2014, 34(9):70-75. YIN Bangtang, LI Xiangfang, LI Jia, et al.A productivity evaluation method of gas reservoirs with great thickness, high deliverability and strong heterogeneity:Case studies of the Puguang in the Sichuan Basin and the Dabei in the Tarim Basin[J].Natural Gas Industry, 2014, 34(9):70-75.
[11] ZHAO Shuangfeng, CHEN Wen, ZHOU Lu, et al. Characteristics of fluid inclusions and implications for the timing of hydrocarbon accumulation in the Cretaceous reservoirs, Kelasu Thrust Belt, Tarim Basin, China[J]. Marine and Petroleum Geology, 2019, 99:473-487.
[12] 戴金星, 倪云燕, 刘全有, 等. 四川超级气盆地[J].石油勘探与开发, 2021, 48(6):1081-1088. DAI Jinxing, NI Yunyan, LIU Quanyou, et al. Sichuan super gas basin in southwest China[J]. Petroleum Exploration and Development, 2021, 48(6):1081-1088.
[13] 林璐, 向立宏, 郝雪峰, 等. 断层封堵型油藏含油高度定量预测:以渤南洼陷南部斜坡带沙三段为例[J].中国石油大学胜利学院学报, 2018, 32(2):5-7. LIN Lu, XIANG Lihong, HAO Xuefeng, et al. Quantitative prediction of oil-bearing height in fault-blocked reservoirs:Example of Sha 3 member in the southern slope zone of Bonan Depression[J]. Journal of Shengli College of China University of Petroleum, 2018, 32(2):5-7.
[14] 唐令. 东濮凹陷沙三段岩性地层油气藏主控因素分析与有利区预测[D].北京:中国石油大学(北京), 2017. TANG Ling. Quantitative prediction and main controlling factor analysis of litho-stratigraphic reservoirs in the third Shahejie Formation of Dongpu Depression[D]. Beijing:China University of Petroleum(Beijing), 2017.
[15] 连建文, 马剑坤, 王仕莉, 等. 顺北断控碳酸盐岩油藏油柱高度的计算方法研究[J]. 重庆科技学院学报(自然科学版), 2020, 22(3):36-40. LIAN Jianwen, MA Jiankun, WANG Shili, et al. Study on the method of oil column height in the control of carbonate reservoirs in Shunbei oilfield[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2020, 22(3):36-40.
[16] 柳东. 济阳坳陷青东凹陷沙河街组油气分布特征及主控因素研究[D]. 北京:中国石油大学(北京), 2016. LIU Dong. Distribution and its main controlling factors of reservoirs of Shahejie Formation in Qingdong Sag, Jiyang Depression[D]. Beijing:China University of Petroleum(Beijing), 2016.
[17] MARTIN A Z. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences[J]. GeoArabia, 2001, 6(3):445-504.
[18] AALI J, RAHIMPOUR-BONAB H, KAMALI M R. Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran[J]. Journal of Petroleum Science and Engineering, 2006, 50(3/4):161-175.
[19] 李运振, 张鑫, 信石印, 等. 波斯湾盆地演化与超大型油气田形成[J].石油实验地质, 2019, 41(4):548-559. LI Yunzhen, ZHANG Xin, XIN Shiyin, et al. Evolution of Persian Gulf Basin and formation of super large oil and gas fields[J]. Petroleum Geology & Experiment, 2019, 41(4):548-559.
[20] 赵丽敏, 周文, 钟原, 等. 伊拉克H油田Mishrif组储集层含油性差异主控因素分析[J].石油勘探与开发, 2019, 46(2):302-311. ZHAO Limin, ZHOU Wen, ZHONG Yuan, et al. Control factors of reservoir oil-bearing difference of Cretaceous Mishrif Formation in the H Oilfield, Iraq[J]. Petroleum Exploration and Development, 2019, 46(2):302-311.
[21] LIU Xiaobing, WEN Zhixin, WANG Zhaoming, et al. Structural characteristics and main controlling factors on petroleum accumulation in Zagros Basin, Middle East[J]. Journal of Natural Gas Geoscience, 2018, 3(5):273-281.
[22] RAISOSSADAT S N, LATIL J L, HAMDANI H, et al. The Kazhdumi Formation(Lower Cretaceous, upper Aptian-upper Albian) in the Zagros Basin, Iran[J]. Cretaceous Research, 2021, 127:104920.
[23] QADROUH A N, ALAJMI M S, ALOTAIBI A M, et al. Mineralogical and geochemical imprints to determine the provenance, depositional environment, and tectonic setting of the Early Silurian source rock of the Qusaiba shale, Saudi Arabia[J]. Marine and Petroleum Geology, 2021, 130:105131.
[24] 王欢, 刘波, 石开波, 等. 伊拉克-伊朗地区侏罗纪-白垩纪构造-沉积演化特征[J].岩性油气藏, 2021, 33(3):39-53. WANG Huan, LIU Bo, SHI Kaibo, et al. Characteristics of tectonic-sedimentary evolution from Jurassic to Cretaceous in IraqIran area[J]. Lithologic Reservoirs, 2021, 33(3):39-53.
[25] LIU Hangyu, SHI Kaibo, LIU Bo, et al. Microfacies and reservoir quality of the Middle Cretaceous Rumaila Formation in the AD oilfield, central Mesopotamian Basin, southern Iraq[J]. Journal of Asian Earth Sciences, 2021, 213:104726.
[26] 白国平. 波斯湾盆地油气分布主控因素初探[J]. 中国石油大学学报(自然科学版), 2007, 31(3):28-32. BAI Guoping. A preliminary study of main control factors on oil and gas distribution in Persian Gulf Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2007, 31(3):28-32.
[27] 王云. 滨里海盆地东缘B区块塔尔构造岩溶型储层发育特征[J].录井工程, 2022, 33(2):103-108. WANG Yun. Development characteristics of karst reservoirs of Taer structure, block B in the eastern margin of Pre-Caspian Basin[J]. Logging Engineering, 2022, 33(2):103-108.
[28] 王雪柯, 王震, 王燕琨, 等. 滨里海盆地D-Ⅰ、Ⅱ区块石炭系碳酸盐岩沉积模式与沉积相演化[J]. 海相油气地质, 2022, 27(1):93-102. WANG Xueke, WANG Zhen, WANG Yankun, et al. Sedimentary model and facies evolution of the Carboniferous carbonate rocks in D-Ⅰ, Ⅱ blocks, Precaspian Basin[J]. Offshore Oil and Gas Geology, 2022, 27(1):93-102.
[29] HE Ling, ZHAO Lun, LI Jianxing, et al. Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors:A case study of platform facies in PreCaspian Basin[J]. Petroleum Exploration and Development, 2014, 41(2):225-234.
[30] ABDOLLAHIEFARD I, SHERKATI S, MCCLAY K, et al. Tectono-sedimentary evolution of the Iranian Zagros in a global context and its impact on petroleum habitats[R]. Elsevier, 2019:17-28.
[31] LI Weiqiang, MU Longxin, ZHAO Lun, et al. Pore-throat structure characteristics and its impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin[J]. Petroleum Exploration and Development, 2020, 47(5):1027-1041.
[32] FERNANDEZ N, DUffy O B, HUDEC M R, et al. The origin of salt-encased sediment packages:Observations from the SE Precaspian Basin(Kazakhstan)[J]. Journal of Structural Geology, 2017, 97:237-256.
[33] LALAMI H R K, HAJIALIBEIGI H, SHERKATI S, et al. Tectonic evolution of the Zagros foreland basin since Early Cretaceous, SW Iran:Regional tectonic implications from subsidence analysis[J]. Journal of Asian Earth Sciences, 2020, 204:104550.
[34] 王学军, 王志欣, 李兆刚, 等. 滨里海盆地M探区盐下层系有利储集相带[J]. 新疆石油地质, 2009, 30(1):142-146. WANG Xuejun, WANG Zhixin, LI Zhaogang, et al. The favorable reservoir facies belts of subsalt complex in Mezhdurechensky block of Pre-Caspian Basin[J]. Xinjiang Petroleum Geology, 2009, 30(1):142-146.
[35] SHALDYBIN M V, WILSON M J, WILSON L, et al. Jurassic and Cretaceous clastic petroleum reservoirs of the West Siberian sedimentary basin:Mineralogy of clays and influence on poro-perm properties[J]. Journal of Asian Earth Sciences, 2021, 222:104964.
[36] 王晓锋, 刘文汇, 郑建京, 等. 乌连戈伊气田形成机制及其启迪[J]. 天然气工业, 2006, 26(5):29-32. WANG Xiaofeng, LIU Wenhui, ZHENG Jianjing, et al. Formation mechanism of Urengoy gas field in the west Siberian Basin and its implication[J]. Natural Gas Industry, 2006, 26(5):29-32.
[37] 杜鹏. 西西伯利亚盆地大油气田的形成条件与分布规律[D]. 北京:中国地质大学(北京), 2011. DU Peng. Formation and distribution of giant oil and gas fields in the northern West Siberian Basin[D]. Beijing:China University of Geosciences(Beijing), 2011.
[38] NOVIKOV D A. Hydrogeochemistry of the Arctic areas of Siberian petroleum basins[J]. Petroleum Exploration and Development, 2017, 44(5):780-788.
[39] 康家豪, 王兴志, 谢圣阳, 等. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4):53-65. KANG Jiahao, WANG Xingzhi, XIE Shengyang, et al. Lithofacies types and reservoir characteristics of shales of Jurassic Da'anzhai member in central Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(4):53-65.
[40] 杜垚, 王兴志. 普光地区飞仙关组层序地层研究[C].郑州:中国古生物学会第十二次全国会员代表大会暨第29届学术年会, 2018. DU Yao, WANG Xingzhi. Study on the stratigraphic sequence of the Feixianguan Formation in the Puguang area[C]. Zhengzhou:The 12th National Congress of the Chinese Palaeontological Society and the 29th Annual Academic Conference, 2018.
[41] 王超. 断层油藏含油高度主控因素研究[D].青岛:中国石油大学(华东), 2011. WANG Chao. Study on the main controlling factors of oil column of faulted reservoir[D]. Qingdao:China University of Petroleum, 2011.
[42] LIANG Xinping, JIN Zhijun, PHILIPPOV V, et al. Sedimentary characteristics and evolution of Domanik facies from the DevonianCarboniferous regression in the southern Volga-Ural Basin[J]. Marine and Petroleum Geology, 2020, 119:104438.
[43] 高计县, 田昌炳, 张为民, 等. 伊拉克鲁迈拉油田Mishrif组碳酸盐岩储层特征及成因[J]. 石油学报, 2013, 34(5):843-852. GAO Jixian, TIAN Changbing, ZHANG Weimin, et al. Characteristics and genesis of carbonate reservoir of the Mishrif Formation in the Rumaila Oilfield, Iraq[J]. Acta Petrolei Sinica, 2013, 34(5):843-852.
[44] 周生友, 马艳, 唐永坤, 等. 滨里海盆地北部-西北部断阶带盐下油气成藏条件[J]. 新疆石油地质, 2010, 31(2):216-219. MA Shengyou, MA Yan, TANG Yongkun, et al. Forming condition for hydrocarbon accumulation and hydrocarbon accumulation pattern in the northern part of Pre-Caspian Basin[J]. Xinjiang Petroleum Geology, 2010, 31(2):216-219.
[45] 雍自权, 杨锁, 钟韬, 等. 大涝坝地区巴什基奇克组隔夹层特征及分布规律[J]. 成都理工大学学报(自然科学版), 2010, 37(1):50-54. YONG Ziquan, YANG Suo, ZHONG Tao, et al. Features and distribution of insulating layers of Bashijiqike Formation in Dalaoba area, Tarim Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2010, 37(1):50-54.
[46] TARI G, FLINCH J F, SOTO J I. Petroleum systems and play types associated with Permo-Triassic salt in Europe, North Africa and the Atlantic Region[R]. Elsevier, 2017:129-156.
[47] FADUL M F, EL DAWI M G, ABDEL-FATTAH M I. Seismic interpretation and tectonic regime of Sudanese Rift System:Implications for hydrocarbon exploration in neem field(Muglad Basin)[J]. Journal of Petroleum Science and Engineering, 2020, 191:107223.
[48] 朱峰. 塔里木盆地塔中地区礁滩储集体叠置规律研究[J]. 石油天然气学报, 2013, 35(10):37-40. ZHU Feng. Superimposed rules of reef-bank reservoirs in Tazhong area of Tarim Basin[J]. Journal of Oil and Gas Technology, 2013, 35(10):37-40.
[49] 李红英, 郑彬, 刘玉娟, 等. 巨厚油层化学驱后剩余油分布精细表征:以X油田为例[J].重庆科技学院学报(自然科学版), 2018, 20(1):26-30. LI Hongying, ZHENG Bin, LIU Yujuan, et al. Fine characterization of residual oil distribution after chemical drive in giant-thick oil reservoirs:An example of X oilfield[J]. Journal of Chongqing Institute of Science and Technology(Natural Science Edition), 2018, 20(1):26-30.
[50] BHUYAN D, BORGOHAIN P, BEZBARUAH D. Diagenesis and reservoir quality of Oligocene Barail Group of Upper Assam Shelf, Assam and Assam Arakan Basin, India[J]. Journal of Asian Earth Sciences, 2022:100100.
[51] 张益, 刘帮华, 胡均志, 等. 苏里格气田苏14井区二叠系下石盒子组盒8段多期叠置砂体储层合理开发方式研究[J].中国石油勘探, 2021, 26(6):165-174. ZHANG Yi, LIU Banghua, HU Junzhi, et al. Study on development mode of multi-stage superimposed sandstone reservoir of He 8 member of the Permian Lower Shihezi Formation in Su 14 well block of Sulige gas field[J]. China Petroleum Exploration, 2021, 26(6):165-174.
[52] 王睿智, 施立志. 川中-川西地区上三叠统油气输导体系的类型及特征[J]. 中国西部科技, 2015, 14(4):34-36. WANG Ruizhi, SHI Lizhi. Types and characteristics of the Upper Triassic oil and gas transmission system in the central-western Sichuan Basin[J]. Science and Technology of West China, 2015, 14(4):34-36.
[53] 田纳新, 闫绍彬, 惠冠洲. 滨里海盆地南部隆起带盐下层系油气成藏主控因素[J].新疆石油地质, 2015, 36(1):116-120. TIAN Naxin, YAN Shaobin, HUl Guanzhou. Controlling factors of petroleum accumulation in pre salt strata in south uplift of Pre-Caspian Basin[J]. Xinjiang Petroleum Geology, 2015, 36(1):116-120.
[54] 范巍. 彭阳地区砂体和不整合面输导体系及其对石油运移聚集的影响[D].西安:西北大学, 2020. FAN Wei. Sandstone and unconformity transportation system and its influence on petroleum migration and accumulation in Pengyang area[D]. Xi'an:Northwest University, 2020.
[55] 郑华, 康凯, 刘卫林, 等. 渤海深层变质岩潜山油藏裂缝主控因素及预测[J]. 岩性油气藏, 2022, 34(3):29-38. ZHENG Hua, KANG Kai, LIU Weilin, et al. Main controlling factors and prediction of fractures in deep metamorphic buried hill reservoirs in Bohai Sea[J]. Lithologic Reservoirs, 2022, 34(3):29-38.
[56] 龙盛芳, 王玉善, 李国良, 等. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2):59-69. LONG Shengfang, WANG Yushan, LI Guoliang, et al. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block, Sulige gas field[J]. Lithologic Reservoirs, 2021, 33(2):59-69.
[57] 李卓. 鄂尔多斯盆地南部奥陶系生物礁滩储层特征与形成机理[D].北京:中国石油大学(北京), 2016. LI Zhuo. Research on characteristics and formation mechanism of Ordovician reef-beach reservoir in the south of Ordos Basin[D]. Beijing:China University of Petroleum(Beijing), 2016.
[58] 田博宁, 陈彦竹, 杜元凯, 等. 碳酸盐岩储集体类型识别:以塔中区块为例[J].辽宁化工, 2017, 46(8):780-781. TIAN Boning, CHEN Yanzhu, DU Yuankai, et al. Identification of carbonate reservoir types:Taking Tazhong block as an Example[J]. Liaoning Chemical Industry, 2017, 46(8):780-781.
[59] 王素英, 张翔, 田景春, 等. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5):81-94. WANG Suying, ZHANG Xiang, TIAN Jingchun, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5):81-94.
[1] 阮蕴博, 周刚, 霍飞, 孙豪飞, 郭佩, 罗涛, 蒋华川, 文华国. 川中地区中三叠统雷口坡组三段源储特征及配置关系[J]. 岩性油气藏, 2022, 34(5): 139-151.
[2] 王涛, 张生银, 魏璞, 李俊飞, 郭晖, 张顺存. 沸石类矿物成因及其对储层储集性能的影响[J]. 岩性油气藏, 2022, 34(1): 175-186.
[3] 李传亮, 朱苏阳, 刘东华. 盖层封堵油气的机理研究[J]. 岩性油气藏, 2019, 31(1): 12-19.
[4] 毛治国, 崔景伟, 綦宗金, 王京红, 苏玲. 风化壳储层分类、特征及油气勘探方向[J]. 岩性油气藏, 2018, 30(2): 12-22.
[5] 高长海,彭浦,李本琼. 不整合类型及其控油特征[J]. 岩性油气藏, 2013, 25(6): 1-7.
[6] 石玉江,李长喜,李高仁,李霞,周金昱,郭浩鹏. 特低渗透油藏源储配置与富集区优选测井评价方法[J]. 岩性油气藏, 2012, 24(4): 45-50.
[7] 张明峰,妥进才,张小军,吴陈君,郭力军. 柴达木盆地乌南油田油源及油气运移探讨[J]. 岩性油气藏, 2012, 24(2): 61-66.
[8] 久凯,丁文龙,李春燕,曾维特. 含油气盆地古构造恢复方法研究及进展[J]. 岩性油气藏, 2012, 24(1): 13-19.
[9] 高长海,查明. 大港油田埕北断阶带不整合与油气运聚[J]. 岩性油气藏, 2010, 22(1): 37-42.
[10] 郑荣才,胡诚,董霞. 辽西凹陷古潜山内幕结构与成藏条件分析[J]. 岩性油气藏, 2009, 21(4): 10-18.
[11] 张景廉. 油气“倒灌”论质疑[J]. 岩性油气藏, 2009, 21(3): 122-128.
[12] 李传亮. 油气倒灌不可能发生[J]. 岩性油气藏, 2009, 21(1): 6-10.
[13] 李传亮. 毛管压力是油气运移的动力吗?——与李明诚教授商榷[J]. 岩性油气藏, 2008, 20(3): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!