岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 125135.doi: 10.12108/yxyqc.20230212
韩云浩1, 姜振学1, 张志遥2, 朱光有2
HAN Yunhao1, JIANG Zhenxue1, ZHANG Zhiyao2, ZHU Guangyou2
摘要: 油气柱的高度是决定油气富集程度的重要指标之一。通过梳理全球各大含油气盆地油气成藏方面的相关资料,对发育有超高油气柱的含油气盆地进行了系统分析,结合其油气供给能力、储盖组合特征以及油气运移方式等,综合分析了含油气盆地内超高油气柱形成的有利地质条件。研究结果表明:①全球发育的具有超高油气柱的油气田以碳酸盐岩层系居多,约占78%,这是由于碳酸盐岩层系相对更易于发育巨厚叠置型的有利储集体,有利于形成超高油气柱。国外典型地区包括波斯湾、滨里海及西西伯利亚盆地等,我国主要分布在四川、渤海湾及塔里木等盆地。②超高油气柱形成的有利条件包括充足的油气供给、纵向叠置发育的巨厚储层、广覆式发育的盖层、纵向网式输导体系、有利的运移条件以及良好的源储匹配关系等6个方面。③塔里木盆地深层也发现了许多超高油气柱,以富满油田为例,下寒武统烃源岩充足的油气供给、中上奥陶统巨厚的礁灰岩储层和致密的泥岩盖层,以及深大断裂等有利的运移条件,是该地区能够形成超高油气柱的主要原因。
中图分类号:
[1] 王建强, 梁杰, 陈建文, 等. 波斯湾地区油气田形成条件、勘探潜力及中国油公司发展对策[J].地球科学与环境学报, 2022, 44(2):298-311. WANG Jianqiang, LIANG Jie, CHEN Jianwen, et al. Formation conditions and exploration potential of oil-gas fields in Persian Gulf region and development countermearsure of Chinese oil corporations[J]. Journal of Earth Science and Environment, 2022, 44(2):298-311. [2] 杨泽光, 冯志强, 王爱国, 等. 波斯湾盆地主力烃源岩特征及成因主控因素[J].海洋石油, 2022, 42(1):1-12. YANG Zeguang, FENG Zhiqiang, WANG Aiguo, et al. Characteristics and dominating genesis factors of main source rocks in Persian Gulf Basin[J]. Offshore Oil, 2022, 42(1):1-12. [3] VYSSOTSKI A V, VYSSOTSKI V N, NEZHDANOV A A. Evolution of the West Siberian Basin[J]. Marine and Petroleum Geology, 2006, 23(1):93-126. [4] HUVAZ O, SARIKAYA H, IŞIK T. Petroleum systems and hydrocarbon potential analysis of the northwestern Uralsk basin, NW Kazakhstan, by utilizing 3 D basin modeling methods[J]. Marine and Petroleum Geology, 2007, 24(4):247-275. [5] 贺正军, 温志新, 王兆明, 等. 西西伯利亚大型裂谷盆地侏罗系-白垩系成藏组合与有利勘探领域[J]. 海相油气地质, 2020, 25(1):70-78. HE Zhengjun, WEN Zhixin, WANG Zhaoming, et al. Reservoir forming assemblages and favorable exploration fields of JurassicCretaceous in the West Siberian giant rift basin[J]. Marine Origin Petroleum Geology, 2020, 25(1):70-78. [6] 李晶, 孙婧, 陶明信. 全球油气探明储量与大油气田的分布及地质构造背景[J]. 天然气地球科学, 2012, 23(2):259-267. LI Jing, SUN Jing, TAO Mingxin. Correlation of globally proved oilgas reserves and distribution of giant size oil-gas fields and geotectonic settings[J]. Natural Gas Geoscience, 2012, 23(2):259-267. [7] LABOUN A A. Regional tectonic and megadepositional cycles of the Paleozoic of northwestern and central Saudi Arabia[J]. Arabian Journal of Geosciences, 2013, 6(4):971-984. [8] 贾承造, 周新源, 王招明, 等. 克拉2气田石油地质特征[J]. 科学通报, 2002, 47(增刊1):91-96. JIA Chengzao, ZHOU Xinyuan, WANG Zhaoming, et al. Petroleum geological characteristics of Kera 2 gas field[J]. Science Bulletin, 2002, 47(Suppl 1):91-96. [9] 廖康涔, 陈轩, 李剑锋, 等. 普光气田飞仙关组滩相储层微观孔隙结构特征分析[J].当代化工, 2020, 49(9):2005-2010. LIAO Kangcen, CHEN Xuan, LI Jianfeng, et al. Analysis on microcosmic pore structure characteristics of beach facies reservoir of Feixianguan Formation in Puguang gas field[J]. Contemporary Chemical Industry, 2020, 49(9):2005-2010. [10] 尹邦堂, 李相方, 李佳, 等. 巨厚高产强非均质气藏产能评价方法:以普光、大北气田为例[J].天然气工业, 2014, 34(9):70-75. YIN Bangtang, LI Xiangfang, LI Jia, et al.A productivity evaluation method of gas reservoirs with great thickness, high deliverability and strong heterogeneity:Case studies of the Puguang in the Sichuan Basin and the Dabei in the Tarim Basin[J].Natural Gas Industry, 2014, 34(9):70-75. [11] ZHAO Shuangfeng, CHEN Wen, ZHOU Lu, et al. Characteristics of fluid inclusions and implications for the timing of hydrocarbon accumulation in the Cretaceous reservoirs, Kelasu Thrust Belt, Tarim Basin, China[J]. Marine and Petroleum Geology, 2019, 99:473-487. [12] 戴金星, 倪云燕, 刘全有, 等. 四川超级气盆地[J].石油勘探与开发, 2021, 48(6):1081-1088. DAI Jinxing, NI Yunyan, LIU Quanyou, et al. Sichuan super gas basin in southwest China[J]. Petroleum Exploration and Development, 2021, 48(6):1081-1088. [13] 林璐, 向立宏, 郝雪峰, 等. 断层封堵型油藏含油高度定量预测:以渤南洼陷南部斜坡带沙三段为例[J].中国石油大学胜利学院学报, 2018, 32(2):5-7. LIN Lu, XIANG Lihong, HAO Xuefeng, et al. Quantitative prediction of oil-bearing height in fault-blocked reservoirs:Example of Sha 3 member in the southern slope zone of Bonan Depression[J]. Journal of Shengli College of China University of Petroleum, 2018, 32(2):5-7. [14] 唐令. 东濮凹陷沙三段岩性地层油气藏主控因素分析与有利区预测[D].北京:中国石油大学(北京), 2017. TANG Ling. Quantitative prediction and main controlling factor analysis of litho-stratigraphic reservoirs in the third Shahejie Formation of Dongpu Depression[D]. Beijing:China University of Petroleum(Beijing), 2017. [15] 连建文, 马剑坤, 王仕莉, 等. 顺北断控碳酸盐岩油藏油柱高度的计算方法研究[J]. 重庆科技学院学报(自然科学版), 2020, 22(3):36-40. LIAN Jianwen, MA Jiankun, WANG Shili, et al. Study on the method of oil column height in the control of carbonate reservoirs in Shunbei oilfield[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2020, 22(3):36-40. [16] 柳东. 济阳坳陷青东凹陷沙河街组油气分布特征及主控因素研究[D]. 北京:中国石油大学(北京), 2016. LIU Dong. Distribution and its main controlling factors of reservoirs of Shahejie Formation in Qingdong Sag, Jiyang Depression[D]. Beijing:China University of Petroleum(Beijing), 2016. [17] MARTIN A Z. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences[J]. GeoArabia, 2001, 6(3):445-504. [18] AALI J, RAHIMPOUR-BONAB H, KAMALI M R. Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran[J]. Journal of Petroleum Science and Engineering, 2006, 50(3/4):161-175. [19] 李运振, 张鑫, 信石印, 等. 波斯湾盆地演化与超大型油气田形成[J].石油实验地质, 2019, 41(4):548-559. LI Yunzhen, ZHANG Xin, XIN Shiyin, et al. Evolution of Persian Gulf Basin and formation of super large oil and gas fields[J]. Petroleum Geology & Experiment, 2019, 41(4):548-559. [20] 赵丽敏, 周文, 钟原, 等. 伊拉克H油田Mishrif组储集层含油性差异主控因素分析[J].石油勘探与开发, 2019, 46(2):302-311. ZHAO Limin, ZHOU Wen, ZHONG Yuan, et al. Control factors of reservoir oil-bearing difference of Cretaceous Mishrif Formation in the H Oilfield, Iraq[J]. Petroleum Exploration and Development, 2019, 46(2):302-311. [21] LIU Xiaobing, WEN Zhixin, WANG Zhaoming, et al. Structural characteristics and main controlling factors on petroleum accumulation in Zagros Basin, Middle East[J]. Journal of Natural Gas Geoscience, 2018, 3(5):273-281. [22] RAISOSSADAT S N, LATIL J L, HAMDANI H, et al. The Kazhdumi Formation(Lower Cretaceous, upper Aptian-upper Albian) in the Zagros Basin, Iran[J]. Cretaceous Research, 2021, 127:104920. [23] QADROUH A N, ALAJMI M S, ALOTAIBI A M, et al. Mineralogical and geochemical imprints to determine the provenance, depositional environment, and tectonic setting of the Early Silurian source rock of the Qusaiba shale, Saudi Arabia[J]. Marine and Petroleum Geology, 2021, 130:105131. [24] 王欢, 刘波, 石开波, 等. 伊拉克-伊朗地区侏罗纪-白垩纪构造-沉积演化特征[J].岩性油气藏, 2021, 33(3):39-53. WANG Huan, LIU Bo, SHI Kaibo, et al. Characteristics of tectonic-sedimentary evolution from Jurassic to Cretaceous in IraqIran area[J]. Lithologic Reservoirs, 2021, 33(3):39-53. [25] LIU Hangyu, SHI Kaibo, LIU Bo, et al. Microfacies and reservoir quality of the Middle Cretaceous Rumaila Formation in the AD oilfield, central Mesopotamian Basin, southern Iraq[J]. Journal of Asian Earth Sciences, 2021, 213:104726. [26] 白国平. 波斯湾盆地油气分布主控因素初探[J]. 中国石油大学学报(自然科学版), 2007, 31(3):28-32. BAI Guoping. A preliminary study of main control factors on oil and gas distribution in Persian Gulf Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2007, 31(3):28-32. [27] 王云. 滨里海盆地东缘B区块塔尔构造岩溶型储层发育特征[J].录井工程, 2022, 33(2):103-108. WANG Yun. Development characteristics of karst reservoirs of Taer structure, block B in the eastern margin of Pre-Caspian Basin[J]. Logging Engineering, 2022, 33(2):103-108. [28] 王雪柯, 王震, 王燕琨, 等. 滨里海盆地D-Ⅰ、Ⅱ区块石炭系碳酸盐岩沉积模式与沉积相演化[J]. 海相油气地质, 2022, 27(1):93-102. WANG Xueke, WANG Zhen, WANG Yankun, et al. Sedimentary model and facies evolution of the Carboniferous carbonate rocks in D-Ⅰ, Ⅱ blocks, Precaspian Basin[J]. Offshore Oil and Gas Geology, 2022, 27(1):93-102. [29] HE Ling, ZHAO Lun, LI Jianxing, et al. Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors:A case study of platform facies in PreCaspian Basin[J]. Petroleum Exploration and Development, 2014, 41(2):225-234. [30] ABDOLLAHIEFARD I, SHERKATI S, MCCLAY K, et al. Tectono-sedimentary evolution of the Iranian Zagros in a global context and its impact on petroleum habitats[R]. Elsevier, 2019:17-28. [31] LI Weiqiang, MU Longxin, ZHAO Lun, et al. Pore-throat structure characteristics and its impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin[J]. Petroleum Exploration and Development, 2020, 47(5):1027-1041. [32] FERNANDEZ N, DUffy O B, HUDEC M R, et al. The origin of salt-encased sediment packages:Observations from the SE Precaspian Basin(Kazakhstan)[J]. Journal of Structural Geology, 2017, 97:237-256. [33] LALAMI H R K, HAJIALIBEIGI H, SHERKATI S, et al. Tectonic evolution of the Zagros foreland basin since Early Cretaceous, SW Iran:Regional tectonic implications from subsidence analysis[J]. Journal of Asian Earth Sciences, 2020, 204:104550. [34] 王学军, 王志欣, 李兆刚, 等. 滨里海盆地M探区盐下层系有利储集相带[J]. 新疆石油地质, 2009, 30(1):142-146. WANG Xuejun, WANG Zhixin, LI Zhaogang, et al. The favorable reservoir facies belts of subsalt complex in Mezhdurechensky block of Pre-Caspian Basin[J]. Xinjiang Petroleum Geology, 2009, 30(1):142-146. [35] SHALDYBIN M V, WILSON M J, WILSON L, et al. Jurassic and Cretaceous clastic petroleum reservoirs of the West Siberian sedimentary basin:Mineralogy of clays and influence on poro-perm properties[J]. Journal of Asian Earth Sciences, 2021, 222:104964. [36] 王晓锋, 刘文汇, 郑建京, 等. 乌连戈伊气田形成机制及其启迪[J]. 天然气工业, 2006, 26(5):29-32. WANG Xiaofeng, LIU Wenhui, ZHENG Jianjing, et al. Formation mechanism of Urengoy gas field in the west Siberian Basin and its implication[J]. Natural Gas Industry, 2006, 26(5):29-32. [37] 杜鹏. 西西伯利亚盆地大油气田的形成条件与分布规律[D]. 北京:中国地质大学(北京), 2011. DU Peng. Formation and distribution of giant oil and gas fields in the northern West Siberian Basin[D]. Beijing:China University of Geosciences(Beijing), 2011. [38] NOVIKOV D A. Hydrogeochemistry of the Arctic areas of Siberian petroleum basins[J]. Petroleum Exploration and Development, 2017, 44(5):780-788. [39] 康家豪, 王兴志, 谢圣阳, 等. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4):53-65. KANG Jiahao, WANG Xingzhi, XIE Shengyang, et al. Lithofacies types and reservoir characteristics of shales of Jurassic Da'anzhai member in central Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(4):53-65. [40] 杜垚, 王兴志. 普光地区飞仙关组层序地层研究[C].郑州:中国古生物学会第十二次全国会员代表大会暨第29届学术年会, 2018. DU Yao, WANG Xingzhi. Study on the stratigraphic sequence of the Feixianguan Formation in the Puguang area[C]. Zhengzhou:The 12th National Congress of the Chinese Palaeontological Society and the 29th Annual Academic Conference, 2018. [41] 王超. 断层油藏含油高度主控因素研究[D].青岛:中国石油大学(华东), 2011. WANG Chao. Study on the main controlling factors of oil column of faulted reservoir[D]. Qingdao:China University of Petroleum, 2011. [42] LIANG Xinping, JIN Zhijun, PHILIPPOV V, et al. Sedimentary characteristics and evolution of Domanik facies from the DevonianCarboniferous regression in the southern Volga-Ural Basin[J]. Marine and Petroleum Geology, 2020, 119:104438. [43] 高计县, 田昌炳, 张为民, 等. 伊拉克鲁迈拉油田Mishrif组碳酸盐岩储层特征及成因[J]. 石油学报, 2013, 34(5):843-852. GAO Jixian, TIAN Changbing, ZHANG Weimin, et al. Characteristics and genesis of carbonate reservoir of the Mishrif Formation in the Rumaila Oilfield, Iraq[J]. Acta Petrolei Sinica, 2013, 34(5):843-852. [44] 周生友, 马艳, 唐永坤, 等. 滨里海盆地北部-西北部断阶带盐下油气成藏条件[J]. 新疆石油地质, 2010, 31(2):216-219. MA Shengyou, MA Yan, TANG Yongkun, et al. Forming condition for hydrocarbon accumulation and hydrocarbon accumulation pattern in the northern part of Pre-Caspian Basin[J]. Xinjiang Petroleum Geology, 2010, 31(2):216-219. [45] 雍自权, 杨锁, 钟韬, 等. 大涝坝地区巴什基奇克组隔夹层特征及分布规律[J]. 成都理工大学学报(自然科学版), 2010, 37(1):50-54. YONG Ziquan, YANG Suo, ZHONG Tao, et al. Features and distribution of insulating layers of Bashijiqike Formation in Dalaoba area, Tarim Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2010, 37(1):50-54. [46] TARI G, FLINCH J F, SOTO J I. Petroleum systems and play types associated with Permo-Triassic salt in Europe, North Africa and the Atlantic Region[R]. Elsevier, 2017:129-156. [47] FADUL M F, EL DAWI M G, ABDEL-FATTAH M I. Seismic interpretation and tectonic regime of Sudanese Rift System:Implications for hydrocarbon exploration in neem field(Muglad Basin)[J]. Journal of Petroleum Science and Engineering, 2020, 191:107223. [48] 朱峰. 塔里木盆地塔中地区礁滩储集体叠置规律研究[J]. 石油天然气学报, 2013, 35(10):37-40. ZHU Feng. Superimposed rules of reef-bank reservoirs in Tazhong area of Tarim Basin[J]. Journal of Oil and Gas Technology, 2013, 35(10):37-40. [49] 李红英, 郑彬, 刘玉娟, 等. 巨厚油层化学驱后剩余油分布精细表征:以X油田为例[J].重庆科技学院学报(自然科学版), 2018, 20(1):26-30. LI Hongying, ZHENG Bin, LIU Yujuan, et al. Fine characterization of residual oil distribution after chemical drive in giant-thick oil reservoirs:An example of X oilfield[J]. Journal of Chongqing Institute of Science and Technology(Natural Science Edition), 2018, 20(1):26-30. [50] BHUYAN D, BORGOHAIN P, BEZBARUAH D. Diagenesis and reservoir quality of Oligocene Barail Group of Upper Assam Shelf, Assam and Assam Arakan Basin, India[J]. Journal of Asian Earth Sciences, 2022:100100. [51] 张益, 刘帮华, 胡均志, 等. 苏里格气田苏14井区二叠系下石盒子组盒8段多期叠置砂体储层合理开发方式研究[J].中国石油勘探, 2021, 26(6):165-174. ZHANG Yi, LIU Banghua, HU Junzhi, et al. Study on development mode of multi-stage superimposed sandstone reservoir of He 8 member of the Permian Lower Shihezi Formation in Su 14 well block of Sulige gas field[J]. China Petroleum Exploration, 2021, 26(6):165-174. [52] 王睿智, 施立志. 川中-川西地区上三叠统油气输导体系的类型及特征[J]. 中国西部科技, 2015, 14(4):34-36. WANG Ruizhi, SHI Lizhi. Types and characteristics of the Upper Triassic oil and gas transmission system in the central-western Sichuan Basin[J]. Science and Technology of West China, 2015, 14(4):34-36. [53] 田纳新, 闫绍彬, 惠冠洲. 滨里海盆地南部隆起带盐下层系油气成藏主控因素[J].新疆石油地质, 2015, 36(1):116-120. TIAN Naxin, YAN Shaobin, HUl Guanzhou. Controlling factors of petroleum accumulation in pre salt strata in south uplift of Pre-Caspian Basin[J]. Xinjiang Petroleum Geology, 2015, 36(1):116-120. [54] 范巍. 彭阳地区砂体和不整合面输导体系及其对石油运移聚集的影响[D].西安:西北大学, 2020. FAN Wei. Sandstone and unconformity transportation system and its influence on petroleum migration and accumulation in Pengyang area[D]. Xi'an:Northwest University, 2020. [55] 郑华, 康凯, 刘卫林, 等. 渤海深层变质岩潜山油藏裂缝主控因素及预测[J]. 岩性油气藏, 2022, 34(3):29-38. ZHENG Hua, KANG Kai, LIU Weilin, et al. Main controlling factors and prediction of fractures in deep metamorphic buried hill reservoirs in Bohai Sea[J]. Lithologic Reservoirs, 2022, 34(3):29-38. [56] 龙盛芳, 王玉善, 李国良, 等. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2):59-69. LONG Shengfang, WANG Yushan, LI Guoliang, et al. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block, Sulige gas field[J]. Lithologic Reservoirs, 2021, 33(2):59-69. [57] 李卓. 鄂尔多斯盆地南部奥陶系生物礁滩储层特征与形成机理[D].北京:中国石油大学(北京), 2016. LI Zhuo. Research on characteristics and formation mechanism of Ordovician reef-beach reservoir in the south of Ordos Basin[D]. Beijing:China University of Petroleum(Beijing), 2016. [58] 田博宁, 陈彦竹, 杜元凯, 等. 碳酸盐岩储集体类型识别:以塔中区块为例[J].辽宁化工, 2017, 46(8):780-781. TIAN Boning, CHEN Yanzhu, DU Yuankai, et al. Identification of carbonate reservoir types:Taking Tazhong block as an Example[J]. Liaoning Chemical Industry, 2017, 46(8):780-781. [59] 王素英, 张翔, 田景春, 等. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5):81-94. WANG Suying, ZHANG Xiang, TIAN Jingchun, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5):81-94. |
[1] | 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88. |
[2] | 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55. |
[3] | 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83. |
[4] | 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68. |
[5] | 王金铎, 曾治平, 徐冰冰, 李超, 刘德志, 范婕, 李松涛, 张增宝. 准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J]. 岩性油气藏, 2024, 36(1): 23-31. |
[6] | 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田FⅠ16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109. |
[7] | 阮蕴博, 周刚, 霍飞, 孙豪飞, 郭佩, 罗涛, 蒋华川, 文华国. 川中地区中三叠统雷口坡组三段源储特征及配置关系[J]. 岩性油气藏, 2022, 34(5): 139-151. |
[8] | 王涛, 张生银, 魏璞, 李俊飞, 郭晖, 张顺存. 沸石类矿物成因及其对储层储集性能的影响[J]. 岩性油气藏, 2022, 34(1): 175-186. |
[9] | 李传亮, 朱苏阳, 刘东华. 盖层封堵油气的机理研究[J]. 岩性油气藏, 2019, 31(1): 12-19. |
[10] | 毛治国, 崔景伟, 綦宗金, 王京红, 苏玲. 风化壳储层分类、特征及油气勘探方向[J]. 岩性油气藏, 2018, 30(2): 12-22. |
[11] | 高长海,彭浦,李本琼. 不整合类型及其控油特征[J]. 岩性油气藏, 2013, 25(6): 1-7. |
[12] | 石玉江,李长喜,李高仁,李霞,周金昱,郭浩鹏. 特低渗透油藏源储配置与富集区优选测井评价方法[J]. 岩性油气藏, 2012, 24(4): 45-50. |
[13] | 张明峰,妥进才,张小军,吴陈君,郭力军. 柴达木盆地乌南油田油源及油气运移探讨[J]. 岩性油气藏, 2012, 24(2): 61-66. |
[14] | 久凯,丁文龙,李春燕,曾维特. 含油气盆地古构造恢复方法研究及进展[J]. 岩性油气藏, 2012, 24(1): 13-19. |
[15] | 高长海,查明. 大港油田埕北断阶带不整合与油气运聚[J]. 岩性油气藏, 2010, 22(1): 37-42. |
|