岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 175–186.doi: 10.12108/yxyqc.20220118

• 论坛与综述 • 上一篇    下一篇

沸石类矿物成因及其对储层储集性能的影响

王涛1,2, 张生银1, 魏璞3, 李俊飞3, 郭晖1, 张顺存1   

  1. 1. 中国科学院西北生态环境资源研究院, 兰州 730000;
    2. 中国科学院大学, 北京 100049;
    3. 中国石油新疆油田分公司石西油田作业区, 新疆克拉玛依 834000
  • 收稿日期:2021-06-30 修回日期:2021-08-16 发布日期:2022-01-21
  • 作者简介:王涛(1994-),男,中国科学院西北生态环境资源研究院在读硕士研究生,研究方向为储层地质学与储层地球化学。地址:(730000)甘肃省兰州市城关区东岗西路382号。Email:wangtao192@mails.ucas.ac.cn。
  • 基金资助:
    国家自然科学基金“富火山岩岩屑砂砾岩储层中沸石类自生矿物的形成条件和溶蚀机理及其对储层物性的影响”(编号:41872145)资助

Genesis of zeolite minerals and its influences on reservoir properties

WANG Tao1,2, ZHANG Shengyin1, WEI Pu3, LI Junfei3, GUO Hui1, ZHANG Shuncun1   

  1. 1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Shixi Oilfield Operation District, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2021-06-30 Revised:2021-08-16 Published:2022-01-21

摘要: 近年来,国内油气田的勘探开发中发现了大量沸石类矿物,为了研究沸石类矿物成因及其对储层的影响,对国内外主要沉积盆地发育的沸石种类、发育的条件及控制因素、沸石类矿物对储层的影响进行了综述。结果表明:①含油气沉积盆地中主要发育方沸石、片沸石、浊沸石和斜发沸石。②盆地中沸石成因可以分为火山玻璃质水岩反应、湖相热水沉积以及盐碱性河流-湖泊成因等3种类型,准噶尔盆地西北缘二叠系、四川盆地中侏罗统、鄂尔多斯盆地上三叠统、塔里木盆地古近系、柴达木盆地古近系至新近系和松辽盆地白垩系储层中沸石类矿物的成因为火山玻璃质水岩反应;准噶尔盆地吉木萨尔凹陷和石树沟凹陷二叠系、三塘湖盆地石炭系至二叠系、渤海湾盆地西部凹陷古近系、酒泉盆地白垩系、二连盆地下白垩统储层中沸石类矿物的成因为湖湘热水沉积;渤海湾盆地黄骅凹陷古近系储层中的沸石类矿物则是盐碱性河流-湖泊成因。③沸石的生成多发生在碱性环境中,水体中的K+,Ca2+,Na+,Mg2+等离子与温度控制生成沸石的种类,压力控制沸石的含水量使得高压环境下生成含水量较少的沸石。④沸石在成岩作用早期充填孔隙并起到一定的支撑作用,后期在有机酸的作用下溶蚀形成次生孔隙,可改善储层的储集性能。该研究成果可为我国含沸石盆地油气勘探和储层改造方案提供参考。

关键词: 沸石类矿物, 储集性能, 碱性环境, 温压条件, 次生孔隙, 含油气盆地

Abstract: In recent years,a large number of zeolite minerals have been discovered in the exploration and development of domestic oil and gas fields. In order to study the genesis of zeolite minerals and its influences on reservoirs,the zeolite types,development conditions and controlling factors in sedimentary basins,and the influences of zeolite minerals on reservoir were reviewed. The results show that:(1) Analcime,heulandite,laumontite and clinoptilolite are mainly developed in petroliferous sedimentary basins.(2) The genesis of zeolite can be divided into three types:volcanic vitreous water-rock reaction,lacustrine hydrothermal deposition and saline-alkaline riverlake. In China,the genesis of zeolite minerals in the Permian reservoirs in the northwestern margin of Junggar Basin,the Middle Jurassic in Sichuan Basin,the Upper Triassic in Ordos Basin,the Paleogene in Tarim Basin, the Paleogene to Neogene in Qaidam Basin and the Cretaceous in Songliao Basin are volcanic vitreous waterrock reaction. The zeolite minerals of Permian in Jimusar Sag and Shishugou Sag,Carboniferous to Permian in Santanghu Basin of Junggar Basin,Paleogene in Western Sag of Bohai Bay Basin,Cretaceous in Jiuquan Basin and Lower Cretaceous in Erlian Basin are derived from lacustrine hydrothermal deposition. Zeolite minerals of Paleogene reservoirs in Huanghua Sag of Bohai Bay Basin is saline-alkaline river-lake genesis.(3) The generation of zeolite occurs in alkaline environment,K+,Ca2+,Na+,Mg2+ plasma in water and temperature control of the types of zeolite,and pressure controls water content of zeolite,which makes the formation of zeolite under high pressure environment with less water content.(4) Zeolite minerals filled pores and played a certain supporting role in the early stage of diagenesis,and later dissolved under the action of organic acid to form secondary pores,which can improve reservoir properties. The research results can provide references for oil and gas exploration and reservoir reconstruction schemes zeolite-bearing basins in China.

Key words: zeolite minerals, reservoir properties, alkaline environment, temperature-pressure conditions, secondary pores, petroliferous basins

中图分类号: 

  • TE132
[1] MING D W, MUMPTON F A. Zeolites in soils?DIXON J B, WEED S B. Minerals in soil environments. Soil Science Society of America, Madison, Wisconsin USA.1977.
[2] MARINER R H, SURDAM R C. Alkalinity and formation of zeolites in saline alkaline lakes. Science, 1970, 170(3961):977980.
[3] TAYLOR M W, SURDAM R C. Zeolite reactions in the tuffaceous sediments at Teels Marsh, Nevada. Clays and Clay Minerals, 1981, 29(5):341-352.
[4] IIJIMA A. Zeolites in petroleum and natural gas reservoirs. Reviews in Mineralogy and Geochemistry, 2001, 45(1):347-402.
[5] 张铨昌. 沸石分子筛的合成与应用. 硅酸盐学报, 1992, 20(6):544-550. ZHANG Q C. Synthesis and application of zeolite molecular sieves. Journal of the Chinese Ceramic Society, 1992, 20(6):544-550.
[6] 袁忠勇, 周午纵, 李赫咺. 沸石类分子筛合成研究新进展. 化学进展, 2001, 13(2):113-117. YUAN Z Y, ZHOU W Z, LI H X. New progress in synthesis of zeolites. Progress in Chemistry, 2001, 13(2):113-117.
[7] KOMARNENI S, ROY D M. Alteration of clay minerals and zeolites in hydrothermal brines. Clays and Clay Minerals, 1983, 31(5):383-391.
[8] TAYLOR W H I. The structure of analcite NaAlSi2O6·H2O·Zeitschrift für Kristallographie-Crystalline Materials, 1930, 74(1):1-19.
[9] WOODS G B, PANAGIOTOPOULOS A Z, ROWLINSON J S. Adsorption of fluids in model zeolite cavities. Molecular Physics, 1988, 63(1):49-63.
[10] ZHANG L, PENG Y X, ZHANG J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chinese Journal of Catalysis, 2016, 37(6):800-809.
[11] 蒋建国, 陈嫣, 邓舟, 等. 沸石吸附法去除垃圾渗滤液中氨氮的研究. 给水排水, 2003, 29(3):6-9. JIANG J G, CHEN Y, DENG Z, et al. Study on the removal of ammonia nitrogen from landfill leachate by zeolite adsorption. Water & Wastewater Engineering, 2003, 29(3):6-9.
[12] SAKADEVAN K, BAVOR H. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research, 1998, 32(2):393-399.
[13] 连丽霞, 杨红霞. 准噶尔盆地西北缘中拐地区二叠系沸石类矿物对储层的影响. 地质论评, 2017, 63(增刊1):91-94. LIAN L X, YANG H X. Influence of Permian zeolite minerals on reservoirs in Zhongguai area, northwestern margin of Junggar Basin. Geological Review, 2017, 63(Suppl 1):91-94.
[14] 张顺存, 刘振宇, 刘巍, 等. 准噶尔盆地西北缘克-百断裂下盘二叠系砂砾岩储层成岩相研究. 岩性油气藏, 2010, 22(4):43-51. ZHANG S C, LIU Z Y, LIU W, et al. Diagenesis facies of Permian sandy conglomerate reservoir in footwall of Kebai fault in northwestern margin of Junggar Basin. Lithologic Reservoirs, 2010, 22(4):43-51.
[15] HEYDARI E, WADE W J. Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks:Implications for organic acids as factors in diagenesis. AAPG Bulletin, 2002, 86(7):1285-1303.
[16] WANG J, ZHOU L, LIU J, et al. Genesis of diagenetic zeolites and their impact on reservoir formation in the Middle Permian Lower-Wuerhe Formation of the Mahu Sag, Junggar Basin, Northwest China. Energy Exploration & Exploitation, 2020, 38(6):2541-2557.
[17] 雷海艳, 樊顺, 鲜本忠, 等. 玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制. 岩性油气藏, 2020, 32(5):102-112. LEI H Y, FAN S, XIAN B Z, et al. Genesis and corrosion mechanism of zeolite in Lower Urho Formation of Permian in Mahu Depression. Lithologic Reservoirs, 2020, 32(5):102-112.
[18] MAZZI F,GALLI E. Is each analcime different? American Mineral, 1978, 63(5):448-460.
[19] PECHAR F. The crystal structure of natural monoclinic analcime(NaAlSi2O6·H2O). Zeitschrift für Kristallographie-Crystalline Materials, 1988, 184(1):63-70.
[20] SHANG J, LI G, SINGH R, et al. Discriminative separation of gases by a "molecular trapdoor" mechanism in chabazite zeolites. Journal of the American Chemical Society, 2012, 134(46):1924619253.
[21] KARADAG D, KOC Y, TURAN M, et al. Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. Journal of Hazardous Materials, 2006, 136(3):604-609.
[22] LI H, LIU Y, YANG K, et al. Hydrothermal mineral assemblages of calcite and dolomite-analcime-pyrite in Permian lacustrine Lucaogou mudstones, eastern Junggar Basin, northwest China. Mineralogy and Petrology, 2021, 115(1):63-85.
[23] 张顺存, 杨兆臣, 刘振宇, 等. 成岩作用对克百断裂下盘二叠系砂砾岩储层物性的控制作用研究. 天然气地球科学, 2010, 21(5):755-761. ZHANG S C, YANG Z C, LIU Z Y, et al. Diagenesis constrain to physical properties of the Permian conglomerate reservoir in underlying block of Kebai fault. Natural Gas Geoscience, 2010, 21(5):755-761.
[24] 吴和源, 唐勇, 孙玮, 等. 准噶尔盆地中拐凸起二叠系佳木河组砂砾岩沸石胶结特征及其成岩机制分析. 岩石矿物学杂志, 2018, 37(1):75-86. WU H Y, TANG Y, SUN W, et al. Cementation characteristics and diagenetic mechanism of conglomerate zeolite in Permian Jiamuhe Formation in Zhongguai uplift, Junggar Basin. Acta Petrologica et Mineralogica, 2018, 37(1):75-86.
[25] 马聪, 王剑, 潘晓慧, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层方沸石成因与甜点意义. 石油实验地质, 2020, 42(4):596-603. MA C, WANG J, PAN X H, et al. Origin and significance of "sweet spots" of analcites in shale oil reservoirs in Permian Lucaogou Formation, Jimsar Sag, Junggar Basin. Petroleum Geology & Experiment, 2020, 42(4):596-603.
[26] 朱国华. 陕北浊沸石次生孔隙砂体的形成与油气关系. 石油学报, 1985, 6(1):1-8. ZHU G H. Formation of lomonitic sand bodies with secondary porosity and their relationship with hydrocarbons. Acta Petrolei Sinica, 1985, 6(1):1-8.
[27] 柳益群. 关于成岩作用与变质作用界线的讨论:从沸石相谈起. 地质论评, 1996, 42(3):215-222. LIU Y Q. The boundary between diagenesis and metamorphism:A discussion with reference to zeolite facies. Geological Review, 1996, 42(3):215-222.
[28] 白清华, 柳益群, 樊婷婷. 鄂尔多斯盆地上三叠统延长组浊沸石分布及其成因分析. 西北地质, 2009, 42(2):100-107. BAI Q H, LIU Y Q, FAN T T. Genesis and distribution of laumontite in Yanchang Formation of Upper Traissic in Ordos Basin. Northwestern Geology, 2009, 42(2):100-107.
[29] 杨晓萍, 张宝民, 陶士振. 四川盆地侏罗系沙溪庙组浊沸石特征及油气勘探意义. 石油勘探与开发, 2005, 32(3):37-40. YANG X P, ZHANG B M, TAO S Z. Laumonite and its significance for petroleum exploration in Jurassic Shaximiao reservoir, Sichuan Basin. Petroleum Exploration and Development, 2005, 32(3):37-40.
[30] 郭强, 钟大康, 张放东, 等. 内蒙古二连盆地白音查干凹陷下白垩统湖相白云岩成因. 古地理学报, 2012, 14(1):59-68. GUO Q, ZHONG D K, ZHANG F D, et al. Origin of the Lower Cretaceous lacustrine dolostones in Baiyinchagan Sag of Erlian Basin, Inner Mongolia. Journal of Palaeogeography, 2012, 14(1):59-68.
[31] 邢顺全, 张书贵. 砂岩中自生浊沸石的形成条件及其地质意义. 大庆油田, 1982, 1(2):5-12. XING S Q, ZHANG S G. Originating conditions of autogenetic laumontite in sandstones and its geological significace. Daqing Oil Field, 1982, 1(2):5-12.
[32] 宋柏荣, 韩洪斗, 崔向东, 等. 渤海湾盆地辽河坳陷古近系沙河街组四段湖相方沸石白云岩成因分析. 古地理学报, 2015, 17(1):33-44. SONG B R, HAN H D, CUI X D, et al. Petrogenesis analysis of lacustrine analcite dolostone of the member 4 of Paleogene Shahejie Formation in Liaohe Depression, Bohai Bay Basin. Journal of Palaeogeography, 2015, 17(1):33-44.
[33] 钟大康, 姜振昌, 郭强, 等. 内蒙古二连盆地白音查干凹陷热水沉积白云岩的发现及其地质与矿产意义. 石油与天然气地质, 2015, 36(4):587-595. ZHONG D K, JIANG Z C, GUO Q, et al. Discovery of hydrothermal dolostones in Baiyinchagan Sag of Erlian Basin, Inner Mongolia, and its geologic and mineral significance. Oil & Gas Geology, 2015, 36(4):587-595.
[34] 薛红兵, 朱如凯, 郭宏莉, 等. 塔里木盆地北部古近系-白垩系成岩相及其储集性能. 新疆石油地质, 2008, 29(1):48-52. XUE H B, ZHU R K, GUO H L, et al. Diagenetic facies and reservoir quality of Paleogene-Cretaceous in northern Tarim Basin. Xinjiang Petroleum Geology, 2008, 29(1):48-52.
[35] MURATA K, FORMOSO M L, ROISENBERG A. Distribution of zeolites in lavas of southeastern Parana Basin, state of Rio Grande do Sul, Brazil. The Journal of Geology, 1987, 95(4):455-467.
[36] ÖNAL M, DEPCI T, CEYLAN C, et al. The zeolite deposit of hekimhan in the Malatya Basin. World Multidisciplinary Earth Sciences Symposium, 2016.
[37] 林培贤, 林春明, 姚悦, 等. 渤海湾盆地北塘凹陷古近系沙河街组三段白云岩中方沸石的特征及成因. 古地理学报, 2017, 19(2):241-256. LIN P X, LIN C M, YAO Y, et al. Characteristics and causes of analcime distributed in dolostone of the member 3 of Paleogene Shahejie Formation in Beitang Sag, Bohai Bay Basin. Journal of Palaeogeography, 2017, 19(2):241-256.
[38] 马达德, 王少依, 寿建峰, 等. 柴达木盆地西南区古近系及新近系砂岩储层. 古地理学报, 2005, 7(4):519-528. MA D D, WANG S Y, SHOU J F, et al. Sandstone reservoirs of the Paleogene and Neogene in southwestern Qaidam Basin. Journal of Palaeogeography, 2005, 7(4):519-528.
[39] 文华国, 郑荣才, QING H R, 等. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. 中国科学:地球科学, 2014, 44(4):591-604. WEN H G, ZHENG R C, QING H R, et al. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan Basin on the northern Tibetan Plateau. Science China:Earth Sciences, 2014, 44(4):591-604.
[40] REED J, GIPSON JR M, VASS D. Hydrocarbon potential of sandstone reservoirs in the east Slovakian Basin, part 2:Zeolites and clay minerals. Journal of Petroleum Geology, 1993, 16(2):223-236.
[41] DAMIAN G, DAMIAN F, MACOVEI G, et al. Zeolitic tuffs from Costiui zone Maramures Basin. Carpathian Journal of Earth and Environmental Sciences, 2007, 2(1):59-74.
[42] HAY R, REES L. Zeolitic weathering of tuffs in Olduvai Gorge, Tanzania. Proceedings of the Fifth International Conference on Zeolites, 1980.
[43] LARSEN D. Revisiting silicate authigenesis in the PliocenePleistocene lake Tecopa beds, southeastern California:Depositional and hydrological controls. Geosphere, 2008, 4(3):612639.
[44] RENAUT R. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the lake Bogoria Basin, Kenya Rift Valley. Sedimentology, 1993, 40(2):271-301.
[45] SURDAM R C, EUGSTER H P. Mineral reactions in the sedimentary deposits of the lake Magadi region, Kenya. Geological Society of America Bulletin, 1976, 87(12):1739-1752.
[46] HAY R L, SHEPPARD R A. Occurrence of zeolites in sedimentary rocks:An overview. Reviews in Mineralogy and Geochemistry, 2001, 45(1):217-234.
[47] CHIPERA S J, GOFF F, GOFF C J, et al. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles caldera, New Mexico, USA. Journal of Volcanology and Geothermal Research, 2008, 178(2):317-330.
[48] KASTNER M. Authigenic feldspars in carbonate rocks. American Mineralogist, 1971, 56(7):1403-1442.
[49] 朱世发, 朱筱敏, 吴冬, 等. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素. 石油与天然气地质, 2014, 35(1):77-85. ZHU S F, ZHU X M, WU D, et al. Alteration of volcanics and its controlling factors in the Lower Permian Reservoirs at northwestern margin of Junggar Basin. Oil & Gas Geology, 2014, 35(1):77-85.
[50] BROXTON D E, BISH D L, WARREN R G. Distribution and chemistry of diagenetic minerals at Yucca Mountain, Nye County, Nevada. Clays and Clay Minerals, 1987, 35(2):89-110.
[51] CHO M, MARUYAMA S, LIOU J. An experimental investigation of heulandite-laumontite equilibrium at 1000 to 2000 bar P fluid. Contributions to Mineralogy and Petrology, 1987, 97(1):43-50.
[52] RONA P A, SCOTT S D. A special issue on sea-floor hydrothermal mineralization, new perspectives, preface. Economic Geology, 1993, 88(8):1935-1976.
[53] RONA P A. Marine minerals for the 21st century. Episodes Journal of International Geoscience, 2002, 25(1):2-12.
[54] 陈先沛, 高计元, 陈多福, 等. 热水沉积作用的概念和几个岩石学标志. 沉积学报, 1992, 10(3):124-132. CHEN X P, GAO J Y, CHEN D F, et al. The concept of hydrotheemai sedimentation and its petrological criteria. Acta Sedimentologica Sinica, 1992, 10(3):124-132.
[55] UTADA M. Zeolites in hydrothermally altered rocks. Reviews in Mineralogy and Geochemistry, 2001, 45(1):305-322.
[56] 柳益群, 李红, 朱玉双, 等. 白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩. 沉积学报, 2010, 28(5):861-867. LIU Y Q, LI H, ZHU Y S, et al. Permian lacustrine eruptive hydrochermal dolomites, Santanghu Basin, Xinjiang Province. Acta Sedimentologica Sinica, 2010, 28(5):861-867.
[57] 李红, 柳益群, 梁浩, 等. 三塘湖盆地二叠系陆相热水沉积方沸石岩特征及成因分析. 沉积学报, 2012, 30(2):205-218. LI H, LIU Y Q, LIANG H, et al. Characteristics and genesis of calcite from Permian continental hydrothermal deposits in Santanghu Basin. Acta Sedimentologica Sinica, 2012,30(2):205218.
[58] 王成, 邵红梅, 洪淑新, 等. 松辽盆地北部深层碎屑岩浊沸石成因、演化及与油气关系研究. 矿物岩石地球化学通报, 2004, 23(3):213-218. WANG C, SHAO H M, HONG S X, et al. Formation and evolution of laumontite and relationship between oil and gas in the clastic rock of the deep strata of the north Songliao Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(3):213-218.
[59] 杨喆, 钟大康, 张硕, 等. 二连盆地白音查干凹陷下白垩统湖相沸石成因:来自矿物学、微量元素特征的证据. 地球科学, 2018, 43(10):3733-3748. YANG Z, ZHONG D K, ZHANG S, et al. Mineralogical and trace-element constrains on the genesis of zeolite in Lower Cretaceous lacustrine rocks from Baiyinchagan Sag, Erlian Basin, China. Earth Science, 2018, 43(10):3733-3748.
[60] 孙玉善, 刘新年, 张艳秋, 等. 中国西部地区方沸石胶结相与碎屑岩次生优质储集层形成机制. 古地理学报, 2014, 16(4):517-526. SUN Y S, LIU X N, ZHANG Y Q, et al. Analcite cementation facies and forming mechanism of high-quality secondary clastic rock reservoirs in western China. Journal of Palaeogeography, 2014, 16(4):517-526.
[61] 张跃, 陈世悦, 孟庆爱, 等. 黄骅坳陷沧东凹陷孔二段细粒沉积岩中方沸石的发现及其地质意义. 中国石油勘探, 2015, 20(4):37-43. ZHANG Y, CHEN S Y, MENG Q A, et al. The discovery of analcite in fine-grained sedimentary rocks of the second member of Kongdian Formation in Cangdong Sag, Huanghua Depression:Implications for early digenetic environment. China Petroleum Exploration, 2015, 20(4):37-43.
[62] DO CAMPO M, DEL PAPA C, JIMÉNEZ-MILLÁN J, et al. Clay mineral assemblages and analcime formation in a Palaeogene fluvial-lacustrine sequence(Maíz Gordo Formation Palaeogen)from Northwestern Argentina. Sedimentary Geology, 2007, 201(1/2):56-74.
[63] HAY R L. Zeolites and zeolitic reactions in sedimentary rocks. Geological Society of America, 1966.
[64] BARGAR K E, KEITH T E, MING D, et al. Calcium zeolites in rhyolitic drill cores from Yellowstone National Park, Wyoming. Natural Zeolites, 1995, 93:87-98.
[65] 方锐, 代宗仰, 谌治君, 等. 不同赋存状态方沸石的特征与成因:以辽河西部凹陷雷家地区古近系沙四段为例. 矿物学报, 2020, 40(6):88-100. FANG R, DAI Z Y, CHEN Z J, et al. Characteristics and genesis of analcites in different occurrence states:A case study of the fourth member of Shahejie Formation in the Leijia area of the western Liaohe Depression. Acta Mineralogica Sinica, 2020, 40(6):88-100.
[66] COOMBS D, ELLIS A, FYFE W, et al. The zeolite facies, with comments on the interpretation of hydrothermal syntheses. Geochimica et Cosmochimica acta, 1959, 17(1/2):53-107.
[67] 孙杨, 弓爱君, 宋永会, 等. 沸石改性方法研究进展. 无机盐工业, 2008, 40(5):1-4. SUN Y, GONG A J, SONG Y H, et al. Research progress on modification methods of zeolite. Inorganic Chemicals Industry, 2008, 40(5):1-4.
[68] SATOKAWA S, ITABASHI K. Crystallization of single phase (K, Na) -clinoptilolite. Microporous Materials, 1997, 8(1/2):49-55.
[69] 章西焕, 马鸿文, 白峰. 利用天然矿物原料合成沸石的研究. 中国矿业, 2005, 14(11):37-40. ZHANG X H, MA H W, BAI F. Study on synthesis of zeolite from natural mineral materials. China Mining Magazine, 2005, 14(11):37-40.
[70] 赵统刚, 吴德意, 陈建刚, 等. 粉煤灰合成沸石同步脱氨除磷特性的研究. 环境科学, 2006, 27(4):696-700. ZHAO T G, WU D Y, CHEN J G, et al. Study on simultaneous deamination and dephosphorization of zeolite synthesized from fly ash. Environmental Science, 2006, 27(4):696-700.
[71] TANAKA H, FUJII A, FUJIMOTO S, et al. Microwave-assisted two-step process for the synthesis of a single-phase Na-A zeolite from coal fly ash. Advanced Powder Technology, 2008, 19(1):83-94.
[72] 柯瑶瑶. 不同合成条件下粉煤灰合成沸石固N/P研究. 北京:北京林业大学, 2015. KE Y Y. Study on synthesis of solid N/P from zeolite from fly ash under different conditions. Beijing:Beijing Forestry University, 2015.
[73] 郭晖. 准噶尔盆地环玛湖凹陷二叠系储层中沸石类胶结物的形成及石油地质意义. 中国科学院西北生态环境资源研究院, 2018. GUO H. Formation and petroleum geological significance of zeolite cements in Permian reservoirs of Mahu Sag, Junggar Basin. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 2018.
[74] 朱世发, 朱筱敏, 王绪龙, 等. 准噶尔盆地西北缘二叠系沸石矿物成岩作用及对油气的意义. 中国科学:地球科学, 2011, 41(11):1602-1612. ZHU S F, ZHU X M, WANG X L, et al. Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of Junggar Basin. Science China:Earth Sciences, 2011, 41(11):1602-1612.
[75] 梁浩, 罗权生, 孔宏伟, 等. 三塘湖盆地火山岩中沸石的成因及其储层意义. 沉积学报, 2011, 29(3):537-543. LIANG H, LUO Q S, KONG H W, et al. Formation and distribution of zeolite in volcanic rock and its effect on reserviors in Santanhu Basin. Acta Sedimentologica Sinica, 2011, 29(3):537-543.
[76] 吴和源, 唐勇, 常秋生. 准噶尔盆地中拐凸起佳木河组沸石类胶结砂砾岩储集层成因机理. 新疆石油地质, 2017, 38(3):281-288. WU H Y, TANG Y, CHANG Q S. Genesis of sandy conglomerate reservoirs cemented by zeolites in Jiamuhe Formation of Zhongguai uplift, Junggar Basin. Xinjiang Petroleum Geology, 2017, 38(3):281-288.
[77] AOYAGI K, KAZAMA T. Transformational changes of clay minerals, zeolites and silica minerals during diagenesis. Sedimentology, 1980, 27(2):179-188.
[78] 李振华, 邱隆伟, 师政, 等. 准噶尔盆地中拐地区佳二段沸石类矿物成岩作用及其对油气成藏的意义. 中国石油大学学报(自然科学版), 2014, 38(1):1-7. LI Z H, QIU L W, SHI Z, et al. Diagenesis of zeolite minerals and its significance for hydrocarbon accumulation in the second member of Jiamuhe Formation of Zhongguai area, Junggar Basin. Journal of China University of Petroleum(Edition of Natural Sciences), 2014, 38(1):1-7.
[1] 李佳思, 付磊, 张金龙, 陈静, 牛斌, 张顺存. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6): 54-66.
[2] 马永平, 王国栋, 张献文, 潘树新, 黄林军, 陈永波, 郭娟娟. 粗粒沉积次生孔隙发育模式——以准噶尔盆地西北缘二叠系夏子街组为例[J]. 岩性油气藏, 2019, 31(5): 34-43.
[3] 余川, 周洵, 方光建, 汪生秀, 余忠樯. 地层温压条件下页岩吸附性能变化特征——以渝东北地区龙马溪组为例[J]. 岩性油气藏, 2018, 30(6): 10-17.
[4] 毛治国, 崔景伟, 綦宗金, 王京红, 苏玲. 风化壳储层分类、特征及油气勘探方向[J]. 岩性油气藏, 2018, 30(2): 12-22.
[5] 刘 露,彭 军,吴慧明,张涵冰. 巴楚地区与塔中地区东河塘组储层储集性能差异分析[J]. 岩性油气藏, 2015, 27(5): 225-231.
[6] 张晶,李双文,刘化清,袁淑琴,牛海清,刘志刚. 歧口凹陷歧南斜坡深部储层特征及综合评价[J]. 岩性油气藏, 2013, 25(6): 46-52.
[7] 吴志雄,张永庶,邹开真,王牧,杜忠明,史基安. 柴北缘鱼卡—九龙山地区侏罗系储层特征分析[J]. 岩性油气藏, 2013, 25(1): 63-68.
[8] 刘豇瑜,郗爱华,冉启全,周 慧,袁 丹. 准噶尔盆地滴西地区石炭系火山岩储层次生孔隙的岩相学特征及主控因素[J]. 岩性油气藏, 2012, 24(3): 51-55.
[9] 久凯,丁文龙,李春燕,曾维特. 含油气盆地古构造恢复方法研究及进展[J]. 岩性油气藏, 2012, 24(1): 13-19.
[10] 张雪花,黄思静,兰叶芳,黄可可,梁瑞. 浊沸石溶解过程的热力学计算及地质意义[J]. 岩性油气藏, 2011, 23(2): 64-69.
[11] 张顺存,刘振宇,刘巍,吴涛,史基安,贾凡建. 准噶尔盆地西北缘克-百断裂下盘二叠系砂砾岩储层成岩相研究[J]. 岩性油气藏, 2010, 22(4): 43-51.
[12] 冯永春,王建民. 鄂尔多斯盆地志丹油田永金地区长6 储层微观孔隙成因类型及特征[J]. 岩性油气藏, 2008, 20(4): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[2] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[3] 胡光义,古莉, 王福利. 礁灰岩特征和块状体储层建模方法探讨[J]. 岩性油气藏, 2007, 19(2): 90 -92 .
[4] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[5] 王辉, 张玉芬. 基于模型的叠前数据多参数非线性反演[J]. 岩性油气藏, 2008, 20(2): 108 -113 .
[6] 李凤杰,郑荣才,蒋斌. 中国大陆主要盆山耦合系统及其特征[J]. 岩性油气藏, 2008, 20(4): 26 -32 .
[7] 万延周,周立发,白斌,谢其锋,蒲磊. 准噶尔盆地南缘水西沟群物源分析[J]. 岩性油气藏, 2009, 21(2): 35 -41 .
[8] 李相博,刘化清,完颜容,魏立花,廖建波,马玉虎. 鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现[J]. 岩性油气藏, 2009, 21(4): 19 -21 .
[9] 王小卫,吕磊,刘伟方,郄树海,田彦灿. 塔里木盆地碳酸盐岩地震资料处理的几项关键技术[J]. 岩性油气藏, 2008, 20(4): 109 -112 .
[10] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .