岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 10–17.doi: 10.12108/yxyqc.20180602

• 油气地质 • 上一篇    下一篇

地层温压条件下页岩吸附性能变化特征——以渝东北地区龙马溪组为例

余川1,2, 周洵1,2, 方光建1,2, 汪生秀1,2, 余忠樯1,2   

  1. 1. 油气资源与探测国家重点实验室 重庆页岩气研究中心, 重庆 400042;
    2. 重庆地质矿产研究院 页岩气勘探开发国家地方联合工程研究中心, 重庆 400042
  • 收稿日期:2018-03-20 修回日期:2018-05-16 出版日期:2018-11-16 发布日期:2018-11-16
  • 作者简介:余川(1985-),男,硕士,高级工程师,主要从事页岩气地质勘探方面的研究工作。地址:(400042)重庆市渝中区长江二路177-9号重庆地质矿产研究院。Email:280850336@qq.com。
  • 基金资助:
    国家重点基础研究发展计划“973”项目“渝东南地区下古生界页岩气资源潜力评价”(编号:2012CB214705-05)与重庆市国土房管局科技计划项目“基于构造与热演化时空配置关系的页岩气有利保存区评价——以重庆及周缘下寒武统为例”(编号:KJ-2018028)联合资助

Adsorptivity of shale under the formation temperature and pressure: a case of Longmaxi Formation in northeastern Chongqing

YU Chuan1,2, ZHOU Xun1,2, FANG Guangjian1,2, WANG Shengxiu1,2, YU Zhongqiang1,2   

  1. 1. Chongqing Shale Gas Research Center of State Key Laboratory of Petroleum Resource and Prospecting, Chongqing 400042, China;
    2. National Joint Engineering Research Center for Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China
  • Received:2018-03-20 Revised:2018-05-16 Online:2018-11-16 Published:2018-11-16

摘要: 页岩气储层的吸附性是影响页岩含气性的关键因素。以渝东北地区下志留统龙马溪组富有机质页岩为例,通过变等温吸附实验,模拟在地层温压变化条件下页岩吸附性能的变化规律,为该区页岩气勘探提供理论依据。实验分析表明:有机质是控制龙马溪组页岩吸附性能的主要内在因素,有机碳含量与页岩吸附能力具有很好的正相关性;地层温压条件是控制页岩吸附性能的外在因素,温度和压力对于页岩吸附性能具有相互抑制的作用,随着温度和压力的升高,页岩吸附能力呈现出类似“抛物线”(先增大后减小)的变化轨迹,在温度和压力均相对较低时,压力起主导作用,在温度和压力均相对较高时,温度起主导作用。页岩吸附性能若要达到最佳状态,则需要埋深、温度和压力三者达到一种合适的匹配状态。实验模拟结果显示,渝东北地区龙马溪组页岩最佳理论吸附状态应在1 000~4 500 m的埋深条件下。

关键词: 吸附性能, 温压条件, 变等温吸附实验, 龙马溪组, 渝东北地区

Abstract: Adsorptivity is a typical characteristic of shale gas reservoir and a key impact factor of shale gas content. The change rule of shale adsorptivity under the formation temperature and pressure was simulated by a heterothermal adsorption experiment with a case of Lower Silurian Longmaxi shale in northeastern Chongqing, so as to provide theoretical basis for shale gas exploration in this area. The result shows that organic matter is the main internal factor which impacts shale adsorptivity of Longmaxi Formation and the TOC content has a very positive correlation with the adsorption capacity of shale. The geological conditions of temperature and pressure are the external factors which impact shale adsorptivity. Temperature and pressure are mutual inhibitory for shale adsorptivity. With the increase of temperature and pressure, the variation tendency of shale adsorption capacity is similar to parabola. When temperature and pressure are relatively low, pressure plays a leading role, while temperature plays a leading role when temperature and pressure are relatively high. Under the underground condition, the best adsorption state of shale needs to achieve an appropriate matching of temperature, pressure and burial depth). The experimental simulation results show that the optimum theoretical adsorption state of Longmaxi shale in northeastern Chongqing should be at the depth of 1 000-4 500 m.

Key words: adsorptivity, temperature-pressure conditions, heterothermal adsorption experiment, Longmaxi Formation, northeastern Chongqing

中图分类号: 

  • P618.13
[1] LU X C, LI F C, WATSON A T. Adsorption measurement in Devonian shales. Fuel, 1995, 74(4):599-603.
[2] 李武广, 杨胜来, 徐晶, 等.考虑地层温度和压力的页岩吸附气含量计算新模型.天然气地球科学, 2012, 23(4):791-796. LI W G, YANG S L, XU J, et al. A new model for shale adsorptive gas amount under a certain geological condition of temperature and pressure. Natural Gas Geoscience, 2012, 23(4):791-796.
[3] 林腊梅, 张金川, 韩双彪, 等.泥页岩储层等温吸附测试异常探讨. 油气地质与采收率, 2012, 19(6):30-32. LIN L M, ZHANG J C, HAN S B, et al. Study on abnormal curves of isothermal adsorption of shale. Petroleum Geology and Recovery Efficiency, 2012, 19(6):30-32.
[4] 聂海宽, 张金川, 马晓彬, 等.页岩等温吸附气含量负吸附现象初探. 地学前缘, 2013, 20(6):282-288. NIE H K, ZHANG J C, MA X B, et al. A preliminary study of negative adsorption phenomena of shale adsorption gas content by isothermal adsorption. Earth Science Frontiers, 2013, 20(6):282-288.
[5] 刘洪林, 王红岩.中国南方海相页岩吸附特征及其影响因素. 天然气工业, 2012, 32(9):5-9. LIU H L, WANG H Y. Adsorptivity and influential factors of marine shales in South China. Natural Gas Industry, 2012, 32(9):5-9.
[6] 郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响. 石油勘探与开发, 2013, 40(4):481-485. GUO W, XIONG W, GAO S S, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas. Petroleum Exploration and Development, 2013, 40(4):481-485.
[7] 赵金, 张遂安, 曹立虎.页岩气与煤层气吸附特征对比实验研究.天然气地球科学, 2013,24(1):176-181. ZHAO J, ZHANG S A, CAO L H. Comparison of experimental adsorption between shale gas and coalbed gas. Natural Gas Geoscience, 2013, 24(1):176-181.
[8] 张林, 魏国齐, 李熙喆, 等.四川盆地震旦系一下古生界高过成熟烃源岩演化史分析.天然气地球科学, 2007, 18(5):726-731. ZHANG L, WEI G Q, LI X Z, et al. The thermal history of SinianLower Paleozoic high/over mature source rock in Sichuan Basin. Natural Gas Geoscience, 2007, 18(5):726-731.
[9] 聂海宽, 包书景, 高波, 等.四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 2012, 19(3):280-294. NIE H K, BAO S J, GAO B, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery. Earth Science Frontiers, 2012, 19(3):280-294.
[10] 张英, 单秀琴, 肖芝华, 等.五科1井下古生界流体包裹体特征与天然气成藏期分析. 矿物岩石地球化学通报, 2006, 25(1):60-65. ZHANG Y, SHAN X Q, XIAO Z H, et al. The characteristics of fluid inclusions in Lower Paleozoic system of the well Wuke 1 and the analysis of the reservoir-forming stage. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1):60-65.
[11] 曾道富, 曾学思.四川盆地古地温及古地温梯度研究. 天然气工业, 1987, 7(4):12-16. ZENG D F, ZENG X S. A research on paleo-geotherm and paleogeothermal gradient of Sichuan Basin. Natural Gas Industry, 1987, 7(4):12-16.
[12] 王艳飞, 肖贤明.四川盆地东北地区古地温梯度模拟. 海相油气地质, 2010, 15(4):57-61. WANG Y F, XIAO X M. An investigation of paleogeothermal gradients in the northeastern part of Sichuan Basin. Marine Origin Petroleum Geology, 2010, 15(4):57-61.
[13] 邹才能, 朱如凯, 白斌, 等.中国油气储层中纳米孔首次发现及其科学价值.岩石学报, 2011, 27(6):1857-1864. ZOU C N, ZHU R K, BAI B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrologica Sinica, 2011, 27(6):1857-1864.
[14] 陈铭, 胥云, 翁定为.页岩气藏游离气量和解吸气量计算方法研究.科学技术与工程, 2015, 15(29):33-38. CHEN M, XU Y, WENG D W. Study on the calculation method of volume of free and desorbed gases in shale gas reservoirs. Science Technology and Engineering, 2015, 15(29):33-38.
[15] 朱汉卿, 贾爱林, 位云生, 等.基于氩气吸附的页岩纳米级孔隙结构特征. 岩性油气藏, 2018, 30(2):77-84. ZHU H Q, JIA A L, WEI Y S, et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs, 2018, 30(2):77-84.
[16] 韩双彪, 张金川, HORSFIELD B, 等.页岩气储层孔隙类型及特征研究:以渝东南下古生界为例.地学前缘, 2013, 20(3):247-253. HAN S B, ZHANG J C, HORSFIELD B, et al. Pore types and characteristics of shale gas reservoir:a case study of Lower Paleozoic shale in southeast Chongqing. Earth Science Frontiers, 2013, 20(3):247-253.
[17] 尹帅, 谢润成, 丁文龙, 等.常规及非常规储层岩石分形特征对渗透率的影响.岩性油气藏, 2017, 29(4):81-90. YIN S, XIE R C, DING W L, et al. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 2017, 29(4):81-90.
[18] 余川, 聂海宽, 曾春林, 等. 四川盆地东部下古生界页岩储集空间特征及其对含气性的影响.地质学报, 2014, 88(7):1311-1320. YU C, NIE H K, ZENG C L, et al. Shale reservoir space characteristics and the effect on gas content in Lower Paleozoic Erathem of the eastern Sichuan Basin. Acta Geologica Sinica, 2014, 88(7):1311-1320.
[19] 曹涛涛, 邓模, 刘虎, 等.可溶有机质对泥页岩储集物性的影响.岩性油气藏, 2018, 30(3):43-51. CAO T T, DENG M, LIU H, et al. Influences of soluble organic matter on reservoir properties of shale. Lithologic Reservoirs, 2018, 30(3):43-51.
[20] 郭秀梅, 王剑, 杨宇宁, 等. 渝东北地区五峰组-龙马溪组黑色页岩储层特征. 沉积与特提斯地质, 2015, 35(2):54-59. GUO X M, WANG J, YANG Y N, et al. Black shale reservoirs from the Wufeng and Longmaxi Formations in northeastern Chongqing. Sedimentary Geology and Tethyan Geology, 2015, 35(2):54-59.
[21] 郭旭升.涪陵页岩气田焦石坝区块富集机理与勘探技术.北京:科学出版社, 2014:104-109. GUO X S. Shale gas enrichment mechanism and exploration technology in Fuling Jiaoshiba blocks. Beijing:Science Press, 2014:104-109.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[3] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[4] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[5] 李贤胜, 刘向君, 熊健, 李玮, 梁利喜. 层理对页岩纵波特性的影响[J]. 岩性油气藏, 2019, 31(3): 152-160.
[6] 王朋飞, 姜振学, 杨彩虹, 金璨, 吕鹏, 王海华. 重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征[J]. 岩性油气藏, 2019, 31(3): 27-36.
[7] 郑珊珊, 刘洛夫, 汪洋, 罗泽华, 王曦蒙, 盛悦, 许同, 王柏寒. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏, 2019, 31(3): 55-65.
[8] 何贵松, 何希鹏, 高玉巧, 张培先, 万静雅, 黄小贞. 中国南方3套海相页岩气成藏条件分析[J]. 岩性油气藏, 2019, 31(1): 57-68.
[9] 沈瑞, 胡志明, 郭和坤, 姜柏材, 苗盛, 李武广. 四川盆地长宁龙马溪组页岩赋存空间及含气规律[J]. 岩性油气藏, 2018, 30(5): 11-17.
[10] 曹涛涛, 邓模, 刘虎, 宋之光, 曹清古, 黄俨然. 可溶有机质对泥页岩储集物性的影响[J]. 岩性油气藏, 2018, 30(3): 43-51.
[11] 朱汉卿, 贾爱林, 位云生, 贾成业, 金亦秋, 袁贺. 基于氩气吸附的页岩纳米级孔隙结构特征[J]. 岩性油气藏, 2018, 30(2): 77-84.
[12] 陈居凯, 朱炎铭, 崔兆帮, 张闯辉. 川南龙马溪组页岩孔隙结构综合表征及其分形特征[J]. 岩性油气藏, 2018, 30(1): 55-62.
[13] 姜生玲, 汪生秀, 洪克岩, 朱亮亮, 胡晓兰. 渝东北地区下古生界页岩气聚集条件及资源潜力[J]. 岩性油气藏, 2017, 29(5): 11-18.
[14] 胡博文, 李斌, 鲁东升, 罗群, 李建新, 王一霖. 页岩气储层特征及含气性主控因素——以湘西北保靖地区龙马溪组为例[J]. 岩性油气藏, 2017, 29(3): 83-91.
[15] 周 文,徐 浩,余 谦,谢润诚,邓 坤. 四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J]. 岩性油气藏, 2016, 28(5): 18-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .