岩性油气藏 ›› 2021, Vol. 33 ›› Issue (6): 135–144.doi: 10.12108/yxyqc.20210614

• 油气地质 • 上一篇    

川南宁西地区五峰组—龙马溪组多期流体活动

李小佳1,2, 邓宾1,2, 刘树根1,2,3, 吴娟1,2, 周政1,2, 焦堃1,2   

  1. 1. 成都理工大学油气藏地质及开发工程国家重点实验室, 成都 610059;
    2. 成都理工大学 能源学院, 成都 610059;
    3. 西华大学, 成都 610039
  • 收稿日期:2021-04-22 修回日期:2021-07-18 发布日期:2021-11-25
  • 通讯作者: 邓宾(1980-),男,博士,教授,主要从事低温热年代学与含油气盆地分析等方面的教学与研究工作。Email:dengbin3000@163.com。 E-mail:dengbin3000@163.com
  • 作者简介:李小佳(1996-),男,成都理工大学在读硕士研究生,研究方向为非常规油气地质学。地址:(610059)四川省成都市成华区二仙桥东三路1号成都理工大学。Email:596897248@qq.com
  • 基金资助:
    四川省科技计划项目“四川盆地深层海相页岩储层特征”(编号:2018JY0437)资助

Multi-stage fluid activity characteristics of Wufeng-Longmaxi Formation in Ningxi area, southern Sichuan Basin

LI Xiaojia1,2, DENG Bin1,2, LIU Shugen1,2,3, WU Juan1,2, ZHOU Zheng1,2, JIAO Kun1,2   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    2. College of Energy, Chengdu University of Technology, Chengdu 610059, China;
    3. Xihua University, Chengdu 610039, China
  • Received:2021-04-22 Revised:2021-07-18 Published:2021-11-25

摘要: 富有机质页岩中方解石脉体普遍发育,其形成过程和机制对成烃储层和成藏具有重要指示意义,为了弄清川南宁西地区五峰组—龙马溪组的多期流体活动特征与区域构造运动过程以及油气成藏的相关性,基于含油气系统成藏动力学过程的基本原理,通过岩心-薄片观察、碳氧同位素分析、流体包裹体测温等方法,并结合四川盆地及周缘沉积、构造演化特征,分析宁西地区多期次的流体活动特征、恢复埋藏史及热演化史。结果表明:研究区碳氧同位素在深度上具有差异,并受流体来源、沉积环境、温度等因素控制,依据同位素特征,可将目的层系分为2期流体:第一期主要活动于龙一1亚段,为液态烃类流体,深度为3 870~3 950 m,脉体δ13C为-6.56‰~-1.58‰,平均值为-3.45‰,δ18O为-13.72‰~-11.06‰,平均值为-13.32‰,碳同位素负偏,脉体中流体包裹体均一温度为120~140 ℃,对应早三叠世的生油阶段;第二期流体主要活动于龙一2亚段,为高温富含甲烷的有机流体,深度为3 830~3 890 m,δ13C为-13.27‰~-12.16‰,平均值为-12.72‰,δ18O为-9.06‰~-6.61‰,平均值为-7.84‰,碳同位素严重负偏,脉体中流体包裹体均一温度为160~180 ℃和200~220 ℃,对应晚侏罗世油高温裂解生气阶段。2期流体活动时页岩气藏处于高压—超压状态,且沉积环境可影响保存条件。该研究结果可为川南地区页岩气富集成藏及保存条件的研究提供一定理论支持。

关键词: 碳氧同位素, 多期流体活动, 五峰组—龙马溪组, 川南

Abstract: Calcite veins are commonly developed in organic-rich shale, and their formation process and mechanism have important indications for hydrocarbon-generating reservoirs and accumulations. In order to clarify the correlation between multi-stage fluid activity characteristics of the target strata and the regional tectonic movement process, oil and gas accumulation, based on the hydrocarbon-bearing system accumulation dynamics, through core-slice observation, carbon and oxygen isotope analysis, fluid inclusion temperature measurement, combined with the sedimentary and structural evolution characteristics of Sichuan Basin and the surrounding areas, multi-phase fluid activity characteristics, recovery burial history and thermal history in Ningxi area were analyzed. The results show the carbon and oxygen isotopes are different in depth, they are controlled by fluid sources, depositional environment, temperature, etc., and they can be divided into two stages of fluids based on isotope characteristics. The first stage of fluid is mainly active in the Long-11 sub-member, which is a liquid hydrocarbon fluid with a depth of 3 870-3 950 m, the range of δ13C in the vein is -6.56‰—-1.58‰, with an average value of -3.45‰, and the range of δ18O is -13.72‰—-11.06‰, with an average value of -13.32‰. The carbon isotope is depleted, and the homogenization temperature of the fluid inclusion in the veins is concentrated at 120-140 ℃, corresponding to the oil-generating stage of the Early Triassic. The second stage of fluid is mainly active in the Long-12 submember, which is a high-temperature methane-rich organic fluid, with a depth of 3 830-38 90 m. The δ13C ranges from- 13.27‰ to -12.16‰, with an average value of -12.72‰, the range of δ18O is -9.06‰—-6.61‰, with an average value of -7.84‰. The carbon isotope is severely depleted, and the homogenization temperature of the fluid inclusions in the veins is concentrated at 160-180 ℃, 200-220 ℃, corresponding to the oil pyrolysis gas generation stage in Late Jurassic. The shale gas reservoir was in a high-overpressure state during the two stages of fluid activity, and the depositional environment affected the preservation conditions. The research results can provide certain theoretical support for the study of shale gas accumulation and preservation conditions in southern Sichuan Bain.

Key words: carbon and oxygen isotopes, multi-stage fluid activity, Wufeng-Longmaxi Formation, southern Sichuan Basin

中图分类号: 

  • TE122.3
[1] 杨跃明, 陈玉龙, 刘燊阳, 等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望. 天然气工业, 2021, 41(1):42-58. YANG Y M, CHEN Y L, LIU S Y, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery. Natural Gas Industry, 2021, 41(1):42-58.
[2] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 2018, 45(4):561-574. MA Y S, CAI X Y, ZHAO P R. China's shale gas exploration and development:Understanding and practice. Petroleum Exploration and Development, 2018, 45(4):561-574.
[3] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 2016, 43(4):499-510. ZHAO W Z, LI J Z, YANG T, et al. Geological difference and its significance of marine shale gases in south China. Petroleum Exploration and Development, 2016, 43(4):499-510.
[4] 刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 2016, 23(1):11-28. LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Science Frontiers, 2016, 23(1):11-28.
[5] 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组-龙马溪组为例. 中国地质, 2014, 41(3):893-901. GUO X S, HU D F, WEN Z D, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery:A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area. Geology in China, 2014, 41(3):893-901.
[6] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素. 天然气工业, 2014, 34(6):17-23. HU D F, ZHANG H R, NI K, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin. Natural Gas Industry, 2014, 34(6):17-23.
[7] 王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件:以贵州岑巩区块下寒武统牛蹄塘组为例. 石油与天然气地质, 2016, 37(1):45-55. WANG R Y, DING W L, GONG D J, et al. Gas preservation conditions of marine shale in northern Guizhou area:A case study of the Lower Cambrian Niutitang Formation in the Cengong block, Guizhou Province. Oil & Gas Geology, 2016, 37(1):45-55.
[8] 何贵松, 何希鹏, 高玉巧, 等. 渝东南盆缘转换带金佛斜坡常压页岩气富集模式. 天然气工业, 2020, 40(6):50-60. HE G S, HE X P, GAO Y Q, et al. Enrichment model of normalpressure shale gas in the Jinfo slope of the basin-margin transition zone in southeast Chongqing. Natural Gas Industry, 2020, 40(6):50-60.
[9] 柳卓, 郝芳, 刘鑫, 等. 川南宁西地区龙一段高密度甲烷包裹体发育特征及地质意义. 地球科学. https://kns.cnki.net/kcms/detail/42.1874.p.20201230.1710.004.html. LIU Z, HAO F, LIU X, et al. Development characteristics and geological significance of high density methane inclusions in the Long 1 st period in the Ningxi area, southern Sichuan Basin. Earth Science. https://kns.cnki.net/kcms/detail/42.1874.p.20201230.1710.004.html.
[10] 马永生, 蔡勋育, 赵培荣, 等. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 2010, 31(3):347-354. MA Y S, CAI X Y, ZHAO P R, et al. Distribution and further exploration of the large-medium sized gas fields in Sichuan Basin. Acta Petrolei Sinica, 2010, 31(3):347-354.
[11] 李亚丁. 长宁区块下古生界龙马溪及筇竹寺组页岩储层特征研究及评价. 成都:西南石油大学, 2017. LI Y D. Research and evaluation of shale reservoir characteristics of Longmaxi and Qiongzhusi formations in the Lower Paleozoic of Changning block. Chengdu:Southwest Petroleum University, 2017.
[12] 张馨艺. 长宁地区五峰组-龙马溪组页岩气地质特征研究. 成都:西南石油大学, 2018. ZHANG X Y. Study on geological characteristics of shale gas from Wufeng Formation to Longmaxi Formation in Changning area. Chengdu:Southwest Petroleum University, 2018.
[13] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素. 石油勘探与开发, 2016, 43(3):317-326. GUO T L. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Petroleum Exploration and Development, 2016, 43(3):317-326.
[14] 朱传庆, 徐明, 单竞男, 等. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 2009, 36(6):1268-1277. ZHU C Q, XU M, SHAN J N, et al. Quantifying the denudations of major tectonic events in Sichuan Basin:Constrained by the paleothermal records. Geology in China, 2009, 36(6):1268-1277.
[15] 袁玉松, 孙冬胜, 李双建, 等. 四川盆地加里东期剥蚀量恢复. 地质科学, 2013, 48(3):581-591. YUAN Y S, SUN D S, LI S J, et al. Caledonian erosion thickness reconstruction in the Sichuan Basin. Chinese Journal of Geology, 2013, 48(3):581-591.
[16] 黄涵宇, 何登发, 李英强, 等. 四川盆地东南部泸州古隆起的厘定及其成因机制. 地学前缘, 2019, 26(1):102-120. HUANG H Y, HE D F, LI Y Q, et al. Determination and formation mechanism of the Luzhou paleo-uplift in the southeastern Sichuan Basin. Earth Science Frontiers, 2019, 26(1):102-120.
[17] 刘文平, 周政, 吴娟, 等. 川南盆地长宁页岩气田五峰组-龙马溪组成藏动力学过程及其意义. 南京大学学报(自然科学), 2020, 56(3):393-404. LIU W P, ZHOU Z, WU J, et al. Hydrocarbon generation and shale gas accumulation in the Wufeng-Longmaxi formations, Changning shale-gas field, southern Sichuan Basin. Journal of Nanjing University(Natural Science), 2020, 56(3):393-404.
[18] 周政. 长宁地区五峰组-龙马溪组页岩气富集特征研究. 成都:成都理工大学, 2020. ZHOU Z. Enrichment laws of shale-gas in the Wufeng-Longmaxi Formation, Changning area, southern Sichuan Basin. Chengdu:Chengdu University of Technology, 2020.
[19] WANG J Y, ARTHUR M A. The diagenetic origin and depositional history of the Cherry Valley member, Middle Devonian Marcellus Formation. Chemical Geology, 2020.
[20] 潘占昆, 刘冬冬, 黄治鑫, 等. 川南地区泸州区块五峰组-龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复. 石油科学通报, 2019, 4(3):242-253. PAN Z K, LIU D D, HUANG Z X, et al. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area, southern Sichuan Basin. Petroleum Science Bulletin, 2019, 4(3):242-253.
[21] 李倩文, 金振奎, 姜福杰. 白云岩成因碳氧同位素分析方法初探:以北京燕山地区元古界白云岩为例. 岩性油气藏, 2014, 26(4):117-122. LI Q W, JIN Z K, JIANG F J. Carbon and oxygen isotope analysis method for dolomite formation mechanism:A case study from Proterozoic dolomite in Yanshan area. Lithologic Reservoirs, 2014, 26(4):117-122.
[22] 高乔, 王兴志, 朱逸青, 等. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素.岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reservoirs, 2019, 31(4):72-84.
[23] 瞿永泽, 徐林刚, 毛景文, 等. 贵州铜仁地区南华系大塘坡组黑色页岩型菱锰矿碳、氧同位素特征及锰矿成矿作用. 矿床地质, 2018, 37(1):50-66. JU Y Z, XU L G, MAO J W, et al. Carbon and oxygen isotope characteristics and mineralization of black shale-hosted manganese carbonate of Datangpo Formation in Tongren, Guizhou Province. Mineral Deposits, 2018, 37(1):50-66.
[24] 曹剑, 胡文, 姚素平, 等. 准噶尔盆地石炭-二叠系方解石脉的碳、氧、锶同位素组成与含油气流体运移. 沉积学报, 2007, 25(5):722-729. CAO J, HU W, YAO S P, et al. Carbon, oxygen and strontium isotope composition of calcite veins in the carbon inferous to Permian source sequences of the Junggar Basin:Implication on petroleum fluid migration. Acta Sedimentologica Sinica, 2007, 25(5):722-729.
[25] 吴安彬, 张景坤, 王井伶, 等. 富有机质页岩方解石脉成因、成岩模式与地质意义:以四川盆地南部龙马溪组为例. 地质论评, 2020, 66(1):88-100. WU A B, ZHANG J K, WANG J L, et al. Genesis, diagenetic model and geological significance of calcite veins in organic-rich shale:A case study of the Longmaxi Formation, southern Sichuan Basin, China. Geological Review, 2020, 66(1):88-100.
[26] 刘安, 周鹏, 陈孝红, 等. 运用方解石脉包裹体和碳氧同位素评价页岩气保存条件:以中扬子地区寒武系为例. 天然气工业, 2021, 41(2):47-55. LIU A, ZHOU P, CHEN X H, et al. Evaluation of shale gas preservation conditions using calcite vein inclusions and C/O isotopes:A case study on the Cambrian strata of Middle Yangtze area. Natural Gas Industry, 2021, 41(2):47-55.
[27] 李文. 涪陵与宜昌地区海相页岩裂缝脉体成因及流体包裹体古温压特征. 武汉:中国地质大学, 2018. LI W. Origin of fracture veins of marine shale in Fuling and Yichang areas and characteristics of paleotemperature and pressure of fluid inclusions. Wuhan:China University of Geosciences, 2018.
[28] 吴建发, 吴娟, 刘文平, 等. 页岩气成藏过程的阶段划分:以四川盆地宁西地区五峰组-龙马溪组页岩气成藏过程为例. 天然气工业, 2021, 41(1):83-92. WU J F, WU J, LIU W P, et al. Stage division of shale gas accumulation process:An example from the Wufeng FormationLongmaxi Formation shale gas reservoir in the Ningxi area of the Sichuan Basin. Natural Gas Industry, 2021, 41(1):83-92.
[1] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(5): 11-21.
[2] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[3] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[4] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[5] 郑珊珊, 刘洛夫, 汪洋, 罗泽华, 王曦蒙, 盛悦, 许同, 王柏寒. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏, 2019, 31(3): 55-65.
[6] 陈居凯, 朱炎铭, 崔兆帮, 张闯辉. 川南龙马溪组页岩孔隙结构综合表征及其分形特征[J]. 岩性油气藏, 2018, 30(1): 55-62.
[7] 王鹏, 沈忠民, 何崇康, 陈刚, 潘树林, 王君泽. 川南地区须家河组天然气地球化学特征及成藏过程[J]. 岩性油气藏, 2017, 29(5): 19-27.
[8] 杨 巍,陈国俊,胡士骏,吕成福,徐 勇,杨 爽. 川南—黔北地区下古生界页岩孔隙发育特征[J]. 岩性油气藏, 2015, 27(4): 47-52.
[9] 李倩文,金振奎,姜福杰. 白云岩成因碳氧同位素分析方法初探———以北京燕山地区元古界白云岩为例[J]. 岩性油气藏, 2014, 26(4): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!