岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 55–65.doi: 10.12108/yxyqc.20190307

• 油气地质 • 上一篇    下一篇

川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素

郑珊珊1,2, 刘洛夫1,2, 汪洋1,2, 罗泽华1,2, 王曦蒙1,2, 盛悦1,2, 许同1,2, 王柏寒1   

  1. 1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学(北京)盆地与油藏研究中心, 北京 102249
  • 收稿日期:2018-10-16 修回日期:2018-12-26 出版日期:2019-05-21 发布日期:2019-05-06
  • 通讯作者: 刘洛夫(1958-),男,博士,教授,主要从事石油地质及油气地球化学方面的研究工作。Email:liulf@cup.edu.cn。 E-mail:liulf@cup.edu.cn
  • 作者简介:郑珊珊(1994-),女,中国石油大学(北京)在读硕士研究生,研究方向为沉积储层及非常规油气地质。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)地球科学学院。Email:1598194544@qq.com
  • 基金资助:
    国家重大科技专项“四川盆地及周缘页岩气形成富集条件与选区评价技术”(编号:2017ZX05035002-005)资助

Characteristics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin

ZHENG Shanshan1,2, LIU Luofu1,2, WANG Yang1,2, LUO Zehua1,2, WANG Ximeng1,2, SHENG Yue1,2, XU Tong1,2, WANG Bohan1   

  1. 1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Basin and Reservoir Research Center, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2018-10-16 Revised:2018-12-26 Online:2019-05-21 Published:2019-05-06

摘要: 为研究川南地区五峰组-龙马溪组页岩储层的孔隙结构特征及主控因素,对9口取心井的页岩样品开展了有机地球化学、X射线衍射全岩矿物含量及黏土矿物相对含量分析、氩离子抛光扫描电镜观察、高压压汞测试和气体(CO2和N2)等温吸附实验等研究。结果表明:①页岩总有机碳(TOC)质量分数平均为2.42%,等效镜质体反射率(Ro)平均为2.83%,有机质处于过成熟阶段;黏土矿物以伊/蒙混层-伊利石-绿泥石组合为主,处于晚成岩阶段。②页岩的平均孔隙度为2.49%,孔径主要为2.6~39.8 nm,以细颈墨水瓶状和狭缝孔为主;饱和吸附气质量体积为0.014 7~0.032 2 cm3/g,总孔隙比表面积为19.49~40.68 m2/g,介孔和宏孔为页岩气的储集提供了主要储集空间,微孔对孔隙的比表面积贡献较大。③TOC,Ro和黏土矿物相对含量等均对微孔和介孔的比表面积具有一定的控制作用,黏土矿物层间孔的发育程度对介孔和宏孔的孔隙体积具有一定的影响,脆性矿物含量与微孔、介孔、宏孔的孔隙体积均呈负相关关系。该研究成果对川南地区寻找优质储层和页岩气富集区均具有指导作用。

关键词: 页岩气, 微观孔隙结构, 有机质, 五峰组-龙马溪组, 川南地区

Abstract: To study the pore structure characteristics and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin, the organic geochemistry, X-ray diffraction analysis of whole rock mineral content and clay mineral content, scanning electron microscopy of argon ion polishing, high pressure mercury injection test and gas (CO2 and N2) isothermal adsorption experiments were carried out on shale samples from nine coring wells. The results show that:(1) The average TOC mass fraction of shale is 2.42%, the average vitrinite reflectance (Ro) is 2.83%, and the organic matter is in over-mature stage. The clay minerals of shale are mainly composed of mixed-layer minerals of illite and montmorillonite, illite and chlorite, so it is in the late diagenetic stage. (2) The average porosity of shale is 2.49%, and pore size is mainly 2.6-39.8 nm, with bottle-shaped and slit holes of fine-necked ink. The mass volume of saturated absorbed gas is 0.0147-0.0322 cm3/g, and the specific surface area of total pores is 19.49-40.68 m2/g. Mesopores and macropores provide the main reservoir space for shale gas reservoir, while micropores contribute greatly to the pore surface area. (3) TOC content, degree of thermal evolution and clay mineral content all have a certain controlling effect on specific surface area of micropores and mesopores, the development degree of interlayer pore has an effect on the mesopore and macropore volume, and the content of brittle minerals is negatively correlated with the volume of micropore, mesopore and macropore. The study results have a guiding role in searching for high-quality reservoirs and shale gas enrichment areas in the southern Sichuan Basin.

Key words: shale gas, microscopic pore structure, organic matter, Wufeng-Longmaxi Formation, southern Sichuan Basin

中图分类号: 

  • TE132.2
[1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二).石油勘探与开发, 2016, 43(2):166-178. ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China:Characteristics,challenges and prospects(Ⅱ). Petroleum Exploration and Development, 2016, 43(2):166-178.
[2] WANGF P, REED R M. Pore networks and fluid flow in gas shales. SPE 124253, 2009.
[3] SONDERGELD C H, AMBROSE R J, RAI C S, et al. Microstructural studies of gas shales. SPE 131771, 2010.
[4] CURTIS M E, AMBROSE R J, SONDERGELD C H. Structural characterization of gas shales on the micro-and nano-scales. SPE 137693, 2010.
[5] 邹才能, 朱如凯, 白斌, 等.中国油气储层中纳米孔首次发现及其科学价值.岩石学报, 2011, 27(6):1857-1864. ZOU C N, ZHU R K, BAI B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrologica Sinica, 2011, 27(6):1857-1864.
[6] 王玉满, 董大忠, 李建忠, 等.川南下志留统龙马溪组页岩气储层特征.石油学报, 2012, 33(4):551-561. WANG Y M, DONG D Z, LI J Z, et al. Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian, Southern Sichuan. Acta Petrolei Sinica, 2012, 33(4):551-561.
[7] 陈尚斌, 朱炎铭, 王红岩, 等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义.煤炭学报, 2012, 37(3):438-444. CHEN S B, ZHU Y M, WANG H Y, et al. Structure characteristics and accumulation significance of nano-pores in Longmaxi shale gas reservoir in the Southern Sichuan Basin. Journal of China Coal Society, 2012, 37(3):438-444.
[8] 吉利明, 邱军利, 夏燕青, 等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性.石油学报, 2012, 33(2):249-256. JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning. Acta Petrolei Sinica, 2012, 33(2):249-256.
[9] 于炳松. 页岩气储层孔隙分类与表征. 地学前缘, 2013, 20(4):211-220. YU B S. Classification and characterization of gas shale pore system. Earth Science Frontiers, 2013, 20(4):211-220.
[10] 郭旭升, 李宇平, 刘若冰, 等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素.天然气工业, 2014, 34(6):9-16. GUO X S, LI Y P, LIU R B, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan Basin. Natural Gas Industry, 2014, 34(6):9-16.
[11] 李贤庆, 王元, 郭曼, 等.川南地区下古生界页岩气储层孔隙特征研究.天然气地球科学, 2015, 26(8):1464-1471. LI X Q, WANG Y, GUO M, et al. Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the south of Sichuan Basin. Natural Gas Geoscience, 2015, 26(8):1464-1471.
[12] 朱汉卿, 贾爱林, 位云生, 等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力.石油学报, 2018, 39(4):391-401. ZHU H Q, JIA A L, WEI Y S, et al. Pore structure and supercritical methane sorption capacity of organic-rich shales in southern Sichuan Basin. Acta Petrolei Sinica, 2018, 39(4):391-401.
[13] 胡琳, 朱炎铭, 陈尚斌, 等.蜀南双河龙马溪组页岩孔隙结构的分形特征.新疆石油地质, 2013, 34(1):79-82. HU L, ZHU Y M, CHEN S B, et al. Fractal characteristics of shale pore structure of Longmaxi Formation in Shuanghe area in southern Sichuan. Xinjiang Petroleum Geology, 2013, 34(1):79-82.
[14] 陈居凯, 朱炎铭, 崔兆帮, 等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in the southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[15] 杨峰, 宁正福, 王庆, 等.页岩纳米孔隙分形特征.天然气地球科学, 2014, 25(4):618-623. YANG F, NING Z F, WANG Q, et al. Fractal characteristics of nanopore in shales. Natural Gas Geoscience, 2014, 25(4):618-623.
[16] 孙文峰, 李玮, 董智煜, 等.页岩孔隙结构表征方法新探索.岩性油气藏, 2017, 29(2):125-130. SUN W F, LI W, DONG Z Y, et al. A new approach to the characterization of shale pore structure. Lithologic Reservoirs, 2017, 29(2):125-130.
[17] 赵佩, 李贤庆, 田兴旺, 等.川南地区龙马溪组页岩气储层微孔隙结构特征.天然气地球科学, 2014, 25(6):947-956. ZHAO P, LI X Q, TIAN X W, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the Southern Sichuan Basin. Natural Gas Geoscience, 2014, 25(6):947-956.
[18] 姜振学, 唐相路, 李卓, 等.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制.地学前缘, 2016, 23(2):126-134. JIANG Z X, TANG X L, LI Z, et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the Southeastern Sichuan Basin. Earth Science Frontiers, 2016, 23(2):126-134.
[19] 孙寅森, 郭少斌.基于图像分析技术的页岩微观孔隙特征定性及定量表征.地球科学进展, 2016, 31(7):751-763. SUN Y S, GUO S B. Qualitative and quantitative characterization of shale microscopic pore characteristics based on image analysis technology. Advances in Earth Science, 2016, 31(7):751-763.
[20] 李可, 王兴志, 张馨艺, 等. 四川盆地东部下志留统龙马溪组页岩储层特征及影响因素. 岩性油气藏, 2016, 28(5):52-58. LI K, WANG X Z, ZHANG X Y, et al. Shale reservoir characteristics and influencing factors of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):52-58.
[21] 纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素.石油学报, 2016, 37(2):182-195. JI W M, SONG Y, JIANG Z X, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, Southeastern Sichuan Basin. Acta Petrolei Sinica, 2016, 37(2):182-195.
[22] 刘树根, 邓宾, 李智武, 等.盆山结构与油气分布:以四川盆地为例.岩石学报, 2011, 27(3):621-635. LIU S G, DENG B, LI Z W, et al. The texture of sedimentary basin-organic belt system and its influence on oil/gas distribution:a case study from Sichuan Basin. Acta Petrologica Sinica, 2011, 27(3):621-635.
[23] 刘树根, 秦川, 孙玮, 等.四川盆地震旦系灯影组油气四中心耦合成藏过程.岩石学报, 2012, 28(3):879-888. LIU S G, QIN C, SUN W, et al. The coupling formation process of four centers of hydrocarbon in Sinian Dengying Formation of Sichuan Basin. Acta Petrologica Sinica, 2012, 28(3):879-888.
[24] 杨威, 谢武仁, 魏国齐, 等.四川盆地寒武纪-奥陶纪层序岩相古地理、有利储层展布与勘探区带.石油学报, 2012, 33(增刊2):21-34. YANG W, XIE W R, WEI G Q, et al. Sequence lithofacies paleogeography, favorable reservoir distribution and exploration zones of the Cambrian and Ordovician in Sichuan Basin, China. Acta Petrolei Sinica, 2012, 33(Suppl 2):21-34.
[25] 郭英海, 李壮福, 李大华, 等.四川地区早志留世岩相古地理. 古地理学报, 2004, 6(1):20-29. GUO Y H, LI Z F, LI D H, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area. Journal of Palaeogeography, 2004, 6(1):20-29.
[26] 张金川, 金之钧, 袁明生.页岩气成藏机理和分布.天然气工业, 2004, 24(7):15-18. ZHANG J C, JIN Z J, YUAN M S. Reservoiring mechanism of shale gas and its distribution. Natural Gas Industry, 2004, 24(7):15-18.
[27] LOUCKSR G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 2009, 79(12):848-861.
[28] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett shale of northcentral Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 2007, 91(4):475-499.
[29] MODICA C J, LAPIERRE S G. Estimation of kerogen porosity in source rocks as a function of thermal transformation:Example from the Mowry shale in the Powder River Basin of Wyoming. AAPG Bulletin, 2012, 96(1):87-108.
[30] 蒲泊伶, 董大忠, 吴松涛, 等.川南地区下古生界海相页岩微观储集空间类型.中国石油大学学报(自然科学版), 2014, 38(4):19-25. PU B L, DONG D Z, WU S T, et al. Microscopic space types of Lower Paleozoic marine shale in the Southern Sichuan Basin. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(4):19-25.
[31] 崔景伟, 邹才能, 朱如凯, 等.页岩孔隙研究新进展.地球科学进展, 2012, 27(12):1319-1325. CUI J W, ZOU C N, ZHU R K, et al. New advances in shale porosity research. Advances in Earth Sciences, 2012, 27(12):1319-1325.
[32] DRUMMOND C, ISRAELACHVILI J. Surface forces and wettability. Journal of Petroleum Science and Engineering, 2002, 33(1):123-133.
[33] GASPARIK M, GHANIZADEH A, BERTIER P, et al. High pressure methane sorption isotherms of black shales from the Netherlands. Energy & Fuels, 2012, 26(8):4995-5004.
[34] KUILA U, PRASAD M. Specific surface area and pore-size distribution in clays and shales. Geophysical Prospecting, 2013, 61(2):341-362.
[35] 韩双彪, 张金川, 杨超, 等.渝东南下寒武页岩纳米级孔隙特征及其储气性能.煤炭学报, 2013, 38(6):1038-1043. HAN S B,ZHANG J C, YANG C, et al. The characteristics of nanoscale pore and its gas storage capability in the Lower Cambrian shale of southeast Chongqing. Journal of China Coal Society, 2013, 38(6):1038-1043.
[36] 张廷山, 杨洋, 龚其森, 等.四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素. 地质学报, 2014, 88(9):1728-1740. ZHANG T S, YANG Y, GONG Q S, et al. Characteristics and mechanisms of the micro-pores in the early Palaeozoic marine shale,southern Sichuan Basin. Acta Geologica Sinica, 2014, 88(9):1728-1740.
[37] 史洪亮, 杨克明, 王同. 川西坳陷须五段致密砂岩与泥页岩储层特征及控制因素. 岩性油气藏, 2017, 29(4):38-46. SHI H L, YANG K M, WANG T. Characteristics and controlling factors of tight sandstone and shale reservoirs of the fifth member of Xujiahe Formation in the Western Sichuan Depression. Lithologic Reservoirs, 2017, 29(4):38-46.
[38] 张士万, 孟志勇, 郭战峰, 等.涪陵地区龙马溪组页岩储层特征及其发育主控因素.天然气工业, 2014, 34(12):16-24. ZHANG S W, MENG Z Y, GUO Z F, et al. Characteristics and major controlling factors of shale reservoirs in the Longmaxi Formation,Fuling area, Sichuan Basin. Natural Gas Industry, 2014, 34(12):16-24.
[39] 余川, 周洵, 方光建, 等.地层温压条件下页岩吸附性能变化特征:以渝东北地区龙马溪组为例. 岩性油气藏, 2018, 30(6):10-17. YU C, ZHOU X, FANG G J, et al. Adsorptivity of shale under the formation temperature and pressure:a case of Longmaxi Formation in northeastern Chongqing. Lithologic Reservoirs, 2018, 30(6):10-17.
[40] CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada. International Journal of Coal Geology, 2007, 70(1/3):223-239.
[41] 朱炎铭, 王阳, 陈尚斌, 等.页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例.地学前缘, 2016, 23(1):154-163. ZHU Y M, WANG Y, CHEN S B, et al. Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs:a case study of Longmaxi Formation in the Upper Yangtze area. Earth Science Frontiers, 2016, 23(1):154-163.
[42] CHALMERS C R L, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett, Woodford, Haynesville,Marcellus, and Doig units. AAPG Bulletin, 2012, 96(6):1099-1119.
[43] 栾国强, 董春梅, 马存飞, 等.基于热模拟实验的富有机质泥页岩成岩作用及演化特征. 沉积学报, 2016, 34(6):1208-1216. LUAN G Q, DONG C M, MA C F, et al. Pyrolysis simulation experiment study on diagenesis and evolution of organic-rich shale. Acta Sedimentologica Sinica, 2016, 34(6):1208-1216.
[44] 王秀平, 牟传龙, 王启宇, 等.川南及邻区龙马溪组黑色岩系成岩作用.石油学报, 2015, 36(9):1035-1047. WANG X P, MOU C L, WANG Q Y, et al. Diagenesis of black shale in Longmaxi Formation, southern Sichuan Basin and its periphery. Acta Petrolei Sinica, 2015, 36(9):1035-1047.
[45] 董春梅, 马存飞, 栾国强, 等.泥页岩热模拟实验及成岩演化模式.沉积学报, 2015, 33(5):1053-1061. DONG C M, MA C F, LUAN G Q, et al. Pyrolysis simulation experiment and diagenesis evolution pattern of shale. Acta Sedimentologica Sinica, 2015, 33(5):1053-1061.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[4] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[5] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[6] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[7] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[8] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[9] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[10] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[11] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[12] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[13] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
[14] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
[15] 姜瑞忠, 张福蕾, 崔永正, 潘红, 张旭, 张春光, 沈泽阳. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .