岩性油气藏 ›› 2023, Vol. 35 ›› Issue (5): 139–152.doi: 10.12108/yxyqc.20230514

• 地质勘探 • 上一篇    下一篇

川北地区二叠系大隆组烃源岩地球化学特征及沉积环境

郭谨豪1,2, 胡国艺1,2, 何坤1,2, 米敬奎1,2, 田连杰1,2, 贺飞1,2, 郭楚媛3, 卢梦蝶3   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国石油集团公司 油气地球化学重点实验室, 北京 100083;
    3. 中国矿业大学 (北京), 北京 100083
  • 收稿日期:2023-03-03 修回日期:2023-05-11 出版日期:2023-09-01 发布日期:2023-09-28
  • 第一作者:郭谨豪(1987—),男,中国石油勘探开发研究院在读硕士研究生,研究方向为油气地球化学。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院。Email:jinhao_guo@petrochina.com.cn。
  • 通信作者: 胡国艺(1968—),男,博士,教授级高工,主要从事油气地球化学研究工作。Email:huguoyi69@petrochina.com.cn。
  • 基金资助:
    国家自然科学基金 “深层无机流体-有机质作用生气机制及同位素分馏效应”(编号: 41973068) 与中国石油科技项目 “高—过成熟烃源岩生排气机理与大气田 (区) 气源灶潜力评价研究”(编号: 2021DJ0601) 联合资助。

Geochemical characteristics and sedimentary environment of source rocks of Permian Dalong Formation in northern Sichuan Basin

GUO Jinhao1,2, HU Guoyi1,2, HE Kun1,2, MI Jingkui1,2, TIAN Lianjie1,2, HE Fei1,2, GUO Chuyuan3, LU Mengdie3   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. Key Laboratory of Petroleum Geochemistry, CNPC, Beijing 100083, China;
    3. China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2023-03-03 Revised:2023-05-11 Online:2023-09-01 Published:2023-09-28

摘要: 通过对川北地区上二叠统大隆组3条野外剖面进行系统采样和地球化学特征分析,从沉积背景、热液活动与上升流、古气候和古盐度、水体环境等4个方面分析了烃源岩的沉积环境,并对有机质富集模式和勘探潜力进行了探讨。研究结果表明: ①川北地区二叠系大隆组烃源岩岩性主要为泥质、硅质泥灰岩,有效厚度为10~40 m,有机质丰度高、类型好,TOC平均值为4.58%,以Ⅱ2型为主,生烃潜力大,平均热解生烃潜量为5.90 mg/g。盆地边缘广元地区长江沟剖面和西北乡剖面处于成熟阶段,Ro值分别为0.72%和1.06%,盆地东部大两乡剖面平均Tmax值为604℃,达过成熟阶段,广元—梁平海槽大隆组生气量达432.38×1012 m3,常规天然气资源量为1.70×1012 m3,页岩气资源量达万亿方级,是一套生气潜力较大的海相优质烃源岩。②研究区大隆组优质烃源岩形成于水体缺氧半局限循环的大陆边缘环境,经历了海槽发育雏形期和海槽发育扩展期2期水体环境的演变,其中,雏形期呈现缺氧—局部厌氧—缺氧的非硫化夹硫化环境,有机质不发育;扩展期为贫氧—缺氧—主体厌氧—缺氧环境,热液活动与上升流导致生物繁盛,火山喷发的酸性气体与半封闭水体环境共同造就了长时期大范围的厌氧硫化静海环境,有利于有机质的富集与保存,在西北乡和长江沟等斜坡—陆棚区表现出较高的TOC值,弱滞留硫化环境中TOC值最大,中等滞留硫化环境次之,强滞留硫化环境中TOC值最小。③研究区大隆组页岩气和源于大隆组热解气的长兴组—飞仙关组优质气藏为主要勘探方向。

关键词: 地球化学特征, 生烃潜力, 缺氧半局限环境, 热液活动, 有机质富集模式, 大隆组, 上二叠统, 广元—梁平海槽, 川北地区

Abstract: Through systematic sampling and geochemical characteristics analysis of three field profiles of Upper Permian Dalong Formation in northern Sichuan Basin,the sedimentary environment of source rocks was analyzed from four aspects of sedimentary background,hydrothermal activity and upwelling,paleoclimate and paleosalinity, and water environment,and the organic matter accumulation model and exploration potential were discussed. The results show that:(1)The Permian Dalong Formation in northern Sichuan Basin has argillaceous and siliceous source rocks with an effective thickness of 10-40 m,a high abundance of organic matters(the average content of organic carbon is 4.58%), good types of organic matters(type Ⅱ2 organic matter is dominant), and great hydrocarbon generation potential(the average pyrolysis hydrocarbon generation potential is 5.90 mg/g). The Changjianggou profile and Xibeixiang profile in Guangyuan area at the margin of Sichuan Basin are in mature stage,with Ro values of 0.72% and 1.06%,respectively. The average Tmax value of Daliangxiang profile in the eastern part of the basin is 604 ℃,reaching an over mature stage. The gas generation of Dalong Formation in Guangyuan-Liangping trough reaches 432.38×1012 m3,with conventional natural gas resource of 1.70×1012 m3 and shale gas resource in trillions of cubic meters,which is a set of marine high-quality source rocks with large gas potential.(2)The high-quality source rocks of Dalong Formation in the study area were formed in a continental margin environment with semi-limited cycle of water hypoxia,and experienced two stages of the evolution of water environment,including embryonic stage and expansion stage of the trough development. In the early stage,there was anoxic-local anaerobic-anoxic unvulcanized and sulphide environment,and organic matter was not developed. In the middle and late stages,there was an oxygen-poor-anoxic-main anaerobic-anoxic environment. Organic matter enrichment was closely related to hydrothermal activity and upwelling. The acid gas from volcanic eruptions and the semi enclosed water environment jointly formed a long-term and large-scale anaerobic hydrodesulfurization environment,which was conducive to the enrichment and preservation of organic matters. It shows a high TOC value in the slope shelf areas such as Xibeixiang and Changjianggou. The TOC value is the greatest in the weak sulfuration environment,followed by the moderate sulfuration environment,and the TOC value is the smallest in a strong retention vulcanization environment.(3)Shale gas of Dalong Formation and high-quality reservoir gas from Changxing-Feixianguan Formation in Guangyuan-Liangping trough are the main exploration directions.

Key words: geochemical characteristics, hydrocarbon generation potential, hypoxic semi-limited environment, hydrothermal activity, organic matter enrichment model, Dalong Formation, Upper Permian, Guangyuan-Liangping trough, northern Sichuan Basin

中图分类号: 

  • TE122.1+13
[1] 刘正元,苑保国,黄兴,等.川西北剑阁县猫儿塘二叠纪地层划分与对比[J].成都理工大学学报(自然科学版), 2020, 47(3):257-273. LIU Zhengyuan, YUAN Baoguo, HUANG Xing, et al. Division and correlation of Permian Formation at Maoertang section in north-west Scihuan, China[J]. Journal of Chengdu University of Techno-logy (Science & Technology Edition), 2020, 47(3):257-273.
[2] 王威,石文斌,付小平,等.川北二叠系大隆组页岩气勘探潜力及方向[J].石油实验地质, 2020, 42(6):892-899. WANG Wei, SHI Wenbin, FU Xiaoping, et al. Shale gas exploration potential and target of Permian Dalong Formation in northern Si-chuan[J]. Petroleum Geology & Experiment, 2020, 42(6):892-899.
[3] 李红敬,解习农,林正良,等.四川盆地广元地区大隆组有机质富集规律[J].地质科技情报, 2009, 28(2):98-103. LI Hongjin, XIE Xinong, LIN Zhengliang, et al. Organic matter enrichment of Dalong Formation in Guangyuan area of the Sichuan Basin[J]. Geological Science and Technology Information, 2009, 28(2):98-103.
[4] 刘康林,吴熙纯,刘树根,等.川西北地区上二叠统长兴组、大隆组沉积特征研究[J].岩性油气藏, 2011, 23(2):30-34. LIU Kanglin, WU Xichun, LIU Shugen, et al. Sedimentary characteristics of Upper Permian Changxing and Dalong Formation in northwestern Sichuan Basin[J]. Lithologic Reservoirs, 2011, 23(2):30-34.
[5] 李牛,胡超涌,马仲武,等.四川广元上寺剖面上二叠统大隆组优质烃源岩发育主控因素初探[J].古地理学报, 2011, 13(3):347-354. LI Niu, HU Chaoyong, MA Zhongwu, et al. Main control fators of high quality hydrocarbon source rocks of the Upper Permian Dalong Formation at Shangsi section of Guangyuan, Sichuan Province[J]. Journal of Palaeogeogrphy, 2011, 13(3):347-354.
[6] 腾格尔,秦建中,付小东,等.川西北地区海相油气成藏物质基础:优质烃源岩[J].石油实验地质, 2008, 30(5):478-483. TENGER, QIN Jianzhong, FU Xiaodong, et al. Basic conditions of marine hydrocarbon accumulation in northwest Sichuan Basin:High guality source rocks[J]. Petroleum Geology & Experiment, 2008, 30(5):478-483.
[7] 夏茂龙,文龙,王一刚,等.四川盆地上二叠统海槽相大隆组优质烃源岩[J].石油勘探与开发, 2010, 37(6):654-662. XIA Maolong, WEN Long, WANG Yigang, et al. High-quality source rocks in trough facies of upper Permian Dalong formation of Sichuan Basin[J]. Petroleum Exploration and Development, 2010, 37(6):654-662.
[8] 付小东,秦建中,腾格尔,等.四川盆地北缘上二叠统大隆组烃源岩评价[J].石油实验地质, 2010, 32(6):566-577. FU Xiaodong, QIN Jiangzhong, TENGER, et al. Evalution on Dalong formation source rock in the north Sichuan Basin[J]. Petroleum Geology & Experiment, 2010, 32(6):566-577.
[9] 何贵松,何希鹏,高玉巧,等.中国南方3套海相页岩气成藏条件分析[J].岩性油气藏, 2019, 31(1):57-68. HE Guisong, HE Xipeng, GAO Yuqiao, et al. Analysis of accumulation conditions of three sets of marine shale gas in southern China[J]. Lithologic Reservoirs, 2019, 31(1):57-68.
[10] 张毅,郑书粲,高波,等.四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素[J].地球科学, 2017, 42(6):1008-1025. ZHANG Yi, ZHENG Shucan, GAO Bo, et al. Distribution characteristics and enrichement factors of organic matter in Upper Permian Dalong formation of Shangsi Section, Guangyuan, Sichuan Basin[J]. Earth Science, 2017, 42(6):1008-1025.
[11] 胡国艺,贺飞,米敬奎,等.川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力[J].天然气地球科学, 2021, 32(3):319-333. HU Guoyi, HE Fei, MI Jingkui, et al. The geochemical characteristics, distribution patterns, and gas explration potential of marine source rocks in northwest Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(3):319-333.
[12] 陈建平,李伟,倪云燕,等.四川盆地二叠系烃源岩及其天然气勘探潜力(一):烃源岩空间分布特征[J].天然气工业, 2018, 38(5):1-16. CHEN Jianping, LI Wei, NI Yunyan, et al. The Permian source rocks in the Sichuan Basin and its natural gas exploration potential (Part1):Spatial distribution of source rocks[J]. Natural Gas Industry, 2018, 38(5):1-16.
[13] 梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(二):南方四套区域性海相烃源岩的地球化学特征[J].海相油气地质, 2009, 14(1):1-15. LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 2):Geochemical characteristics of four suits of regional marine source rocks, south China[J]. Marine Origin Petroleum Geology, 2009, 14(1):1-15.
[14] 黄籍中.干酪根的稳定碳同位素分类依据[J].地质地球化学, 1988, 16(3):66-68. HUANG Jizhong. Classification of stable carbon isotopes of kerogen[J]. Geology Geochemisty, 1988, 16(3):66-68.
[15] 王顺玉,戴鸿鸣,王海清,等.大巴山、米仓山南缘烃源岩特征研究[J].天然气地球科学, 2000, 11(4/5):4-16. WANG Shunyu, DAI Hongming, WANG Haiqing, et al. Source rock feature of the south of the Dabashan and Micangshan[J]. Natural Gas Geoscince, 2000, 11(4/5):4-16.
[16] 王明筏,文虎,倪楷,等.四川盆地北部大隆组页岩气地质条件及勘探潜力[J].西南石油大学学报(自然科学版), 2023, 45(1):13-23. WANG Mingfa, WEN Hu, NI Kai, et al. Geological conditions and exploration potential of shale gas in Dalong Formation in northern Sichuan Basin[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2023, 45(1):13-23.
[17] MURRAY R W. Chemical Criteria to identify the depositional environment of chert:Deneral principles and applications[J]. Sedimentary Geology, 1994, 90(3/4):213-232.
[18] HEFT K L, GILLIS K M, POLLOCK M A, et al. Role of upwelling hydrothermal fluids in the development of alteration patterns at fast spreading ridges:Evidence from the sheeted dike complex at Pito Deep[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5):1-10.
[19] 龚大兴,林金辉,唐云凤,等.上扬子地台北缘古生界海相烃源岩有机地球化学特征[J].岩性油气藏, 2010, 22(3):31-37. GONG Daxing, LIN Jinhui, TANG Yunfeng, et al. Organic geochemical characteristics of Paleozoic marine source rocks in northern margin of Upper Yangtze Platform[J]. Lithologic Reservoirs, 2010, 22(3):31-37.
[20] 李靖,周世新,巩书华,等.川东北地区烃源岩与沥青生物标志物特征及古油藏油源辨识[J].岩性油气藏, 2013, 25(4):54-62. LI Jing, ZHOU Shixin, GONG Shuhua, et al. Biomarker characteristics of source rock and bitumen and oil-source correlation of paleo-reservoir in northeastern Sichuan[J]. Lithologic Reservoirs, 2013, 25(4):54-62.
[21] GUO Qingjun, SHIELDS G A, LIU Congqiang, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoc limatology, Palaeoecology, 2007, 254(1/2):194-216.
[22] 王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报(自然科学版), 2014, 50(3):476-486. WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):476-486.
[23] HULTHE G, HULTH S, HALL P O J. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 1998, 62(8):1319-1328.
[24] CALVERT S E, PEDERSON T F. Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record[J]. Marine Geology, 1993, 113(1/2):67-88.
[25] YANG Hua. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4):285-293.
[26] CHANG Chao, HU Wenxuan, FU Qi, et al. Characterization of trace elements and carbon isotopes across the Ediacaran-Cambrian boundary in Anhui Province, South China:Implications for stratigraphy and paleoenvironment reconstruction[J]. Journal of Asian Earth Sciences, 2016, 125:58-70.
[27] NOZAKI Y, ZHANG Jing, AMAKAWA H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2):329-340.
[28] FU Xiugen, WANG Jian, CHEN Wenbin, et al. Organic accumulation in lacustrine rift basin:Constraints from mineralogical and multiple geochemical proxies[J]. International Journal of Earth Sciences, 2014, 104(2):495-511.
[29] 陈洪德,李洁,张成弓,等.鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J].岩石学报, 2011, 27(8):2213-2229. CHEN Hongde, LI Jie, ZHANG Chenggong, et al. Discussion of sedimentray encironment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8):2213-2229.
[30] 王登,周豹,冷双梁,等.鄂西咸丰地区五峰组—龙马溪组硅质岩地球化学特征及地质意义[J].岩性油气藏, 2022, 34(1):52-62. WANG Deng, ZHOU Bao, LENG Shuangliang, et al. Geochemical characteristics and geological significance of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area, western Hubei[J]. Lithologic Reservoirs, 2022, 34(1):52-62.
[31] CRAIG J R, VOKES F M, SOLBERG T N. Pyrite:Physical and chemical textures, Mineral[J]. Deposita, 1998, 34(1):82-101.
[32] WIGNALL P B, TWITCHETT R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265):1155-1158.
[33] 吴其林,傅恒,李秀华,等.川东北元坝地区长兴组岩石学特征及其意义[J].岩性油气藏, 2012, 24(2):72-76. WU Qilin, FU Heng, LI Xiuhua, et al. Characteristics and significance of petrology of Changxing Formation in Yuanba area, nor-theastern Sichuan[J]. Lithologic Reservoirs, 2012, 24(2):72-76.
[34] ALGEO T J, TRIBOVLLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3):211-225.
[35] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(4/5):111-129.
[36] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsy lvanian (Missourian) stark shale member of the Dennis limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1/2/3):65-82.
[37] CHENG Meng, LI Chao, ZHOU Lian, et al. Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters:A case study of the lower Cambrian Niutitang shales, South China[J]. Geochimica et Cosmochimica Acta, 2016, 183:79-93.
[38] SCOTT C, LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks:Refining the paleoproxies[J]. Chemical Geology, 2012, 324/325:19-27.
[39] ZHOU Chuanming, JIANG Shaoyong. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China:Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3/4):279-286.
[40] ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments:Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1):A1016-1-A1016-23.
[41] TRIBOVILLARD N, ALGEO T J, LYONS T W, et al. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology, 2006, 232(1):12-32.
[42] 朱玉环,戴鸿鸣.川西北龙岗西气田长兴组和飞仙关组天然气来源[J].化工设计通讯, 2021, 47(11):29-30. ZHU Yuhuan, DAI Hongming. Natural gas sources of Changxing Formation and Feixiangguan Formation in Longgang west gas field, Northwest Sichuan[J]. Chemical Engineering Design Com-munications, 2021, 47(11):29-30.
[1] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[2] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[3] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[4] 李二庭, 米巨磊, 张宇, 潘越扬, 迪丽达尔·肉孜, 王海静, 高秀伟. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征[J]. 岩性油气藏, 2024, 36(1): 88-97.
[5] 唐勇, 王智强, 庞燕青, 邓世坤, 王超, 洪鹏辉. 准噶尔盆地西部坳陷二叠系下乌尔禾组烃源岩生烃潜力评价[J]. 岩性油气藏, 2023, 35(4): 16-28.
[6] 邓美玲, 王宁, 李新琦, 陈容涛, 刘岩, 徐耀辉. 渤海莱州湾凹陷中部古近系沙三段烃源岩地球化学特征及沉积环境[J]. 岩性油气藏, 2023, 35(1): 49-62.
[7] 魏新, 唐建云, 宋红霞, 陈玉宝. 鄂尔多斯盆地甘泉地区上古生界烃源岩地球化学特征及生烃潜力[J]. 岩性油气藏, 2022, 34(6): 92-100.
[8] 王登, 周豹, 冷双梁, 温雅茹, 刘海, 张小波, 余江浩, 陈威. 鄂西咸丰地区五峰组—龙马溪组硅质岩地球化学特征及地质意义[J]. 岩性油气藏, 2022, 34(1): 52-62.
[9] 张小琴, 李威, 王飞龙, 王宁, 徐耀辉, 刘岩, 程如蛟, 刘华秋. 辽东湾地区古近系烃源岩生物标志物特征及其地质意义[J]. 岩性油气藏, 2022, 34(1): 73-85.
[10] 潘宾锋, 高月泉, 潘涛, 李宗贤, 王志伟, 邱文波, 封蓉. 银额盆地拐子湖凹陷北部地区白垩系烃源岩特征[J]. 岩性油气藏, 2021, 33(6): 114-123.
[11] 徐宇轩, 代宗仰, 胡晓东, 徐志明, 李丹. 川东北沙溪庙组天然气地球化学特征及地质意义——以五宝场地区为例[J]. 岩性油气藏, 2021, 33(1): 209-219.
[12] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[13] 黄彦杰, 白玉彬, 孙兵华, 黄礼, 黄昌武. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75.
[14] 李佳思, 付磊, 张金龙, 陈静, 牛斌, 张顺存. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6): 54-66.
[15] 王良军. 川北地区灯影组四段优质储层特征及控制因素[J]. 岩性油气藏, 2019, 31(2): 35-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .