岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 52–62.doi: 10.12108/yxyqc.20220106

• 油气地质 • 上一篇    下一篇

鄂西咸丰地区五峰组—龙马溪组硅质岩地球化学特征及地质意义

王登1,2, 周豹1,2, 冷双梁1,2, 温雅茹1, 刘海3, 张小波1, 余江浩1, 陈威1   

  1. 1. 湖北省地质调查院, 武汉 430034;
    2. 湖北省地质勘查工程技术研究中心, 武汉 430022;
    3. 中国石油集团西部钻探工程有限公司苏里格气田分公司, 内蒙古鄂尔多斯 017300
  • 收稿日期:2021-08-25 修回日期:2021-10-28 发布日期:2022-01-21
  • 通讯作者: 周豹(1985—),男,硕士,高级工程师,主要从事地质矿产勘查方面的工作。Email:278776817@qq.com。 E-mail:278776817@qq.com
  • 作者简介:王登(1987-),男,硕士,工程师,主要从事地质矿产调查与勘探方面的工作。地址:(430034)湖北省武汉市硚口区古田五路9号。Email:w362311767@126.com
  • 基金资助:
    湖北省地质勘查基金项目“湖北省页岩气资源潜力评价”(编号:DKC2014-03-04)、中国地质调查局项目“南方地区构造演化控制页岩气形成与分布调查”(编号:DD20160183)、湖北省自然科学基金项目“鄂西地区五峰—龙马溪组页岩孔缝特征对页岩气保存条件的指示”(编号:2020CFB501)和湖北省地质局科技项目“鄂西地区主要含气层系页岩气形成、富集与保存条件研究”(编号:KJ2020-4)联合资助

Geochemical characteristics and geological significance of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area, western Hubei

WANG Deng1,2, ZHOU Bao1,2, LENG Shuangliang1,2, WEN Yaru1, LIU Hai3, ZHANG Xiaobo1, YU Jianghao1, CHEN Wei1   

  1. 1. Hubei Geological Survey, Wuhan 430034, China;
    2. Hubei Geological Exploration Engineering Technology Research Center, Wuhan 430022, China;
    3. Sulige Gas Field Branch, CNPC Xibu Drilling Engineering Company Limited, Ordos 017300, Inner Mongolia, China
  • Received:2021-08-25 Revised:2021-10-28 Published:2022-01-21

摘要: 为了研究鄂西咸丰地区五峰组和龙马溪组硅质岩的地球化学特征和成因,对咸丰地区沙岭剖面硅质岩进行薄片镜下鉴定、扫描电镜、主量和微量元素等分析测试,并与典型热液成因硅质岩对比。结果表明:研究区五峰组和龙马溪组硅质岩的SiO2含量较高(平均质量分数分别为83.58%和76.47%),硅质矿物主要为玉髓,含少量微粒状石英和陆源碎屑石英,具有较高的Al(/Al+Fe+Mn)值、较低的MnO/TiO2值和较高的LaN/YbN值。五峰组和龙马溪组硅质岩的w(LaN)/w(CeN)平均值分别为1.15和1.06,具有微弱负Ce异常和负Eu异常,与热液成因硅质岩差异明显。研究区五峰组和龙马溪组硅质岩为正常海水沉积成因,以生物沉积作用为主,并伴有陆源输入,沉积环境为大陆边缘的半局限深水陆棚。生物硅含量和TOC含量并不是简单的线性关系,而是具有先增大后减小的特征;放射虫体内大量发育的石英粒内孔和有机质孔可以显著提高硅质岩储集空间,进而改善硅质岩储存页岩气的能力。

关键词: 地球化学特征, 硅质岩, 五峰组, 龙马溪组, 咸丰地区, 鄂西

Abstract: In order to study the geochemical characteristics and genesis of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area of western Hubei, the siliceous rocks of Shaling profile in Xianfeng area were identified by thin section identification, scanning electron microscope, major and trace elements analysis, and compared with typical hydrothermal siliceous rocks. The results show that the siliceous rocks of Wufeng Formation and Longmaxi Formation in the study area have high SiO2 content(the average mass fraction is 83.58% and 76.47% respectively). The siliceous minerals are mainly chalcedony, containing a small amount of micro quartz and terrigenous clastic quartz, with high Al(/Al+ Fe+ Mn), low MnO/TiO2 and high LaN/YbN values. The average values of w(LaN)/w(CeN) of Wufeng Formation and Longmaxi Formation are 1.15 and 1.06 respectively, with weak negative Ce anomaly and negative Eu anomaly, which are obviously different from hydrothermal siliceous rocks. The siliceous rocks of Wufeng Formation and Longmaxi Formation in the study area are of normal marine sedimentary origin, mainly biological sedimentation, accompanied by terrigenous input, and the sedimentary environment is a semi-restricted deep-water shelf on the continental margin. The relationship between biogenic silica content and TOC content is not a simple linear one, but increases at first and then decreases. Furthermore, the quartz intragranular pores and organic pores developed in radiolarians can significantly increase the reservoir space of siliceous rocks and improve shale gas capacity storage of siliceous rocks.

Key words: geochemical characteristics, siliceous rock, Wufeng Formation, Longmaxi Formation, Xianfeng area, western Hubei

中图分类号: 

  • TE122.1+13
[1] 何俊国, 周永章, 聂凤军, 等.西藏南部热水沉积硅质岩岩石学和地球化学特征及地质意义. 矿物岩石地球化学通报, 2007, 26(1):74-81. HE J G, ZHOU Y Z, NIE F J, et al. Petrologic and geochemical characteristics of the hydrothermal chert in southern Tibet and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1):74-81.
[2] 邱振, 谈昕, 卢斌, 等. 四川盆地巫溪地区五峰组-龙马溪组硅质岩地球化学特征. 矿物岩石地球化学通报, 2018, 37(5):880-887. QIU Z, TAN X, LU B, et al. Geochemical characteristics of cherts from the Wufeng and Longmaxi Formations in the Wuxi area, Sichuan Basin. Bulletin of Mineralogy, Petrology and Geochemi-stry, 2018, 37(5):880-887.
[3] 危凯, 陈孝红, 王传尚, 等. 湘鄂西地区晚埃迪卡拉世-早寒武世硅质岩成因及其页岩气地质意义. 地质科技通报, 2020, 39(2):20-30.WEI K, CHEN X H, WANG C S, et al. Origin of siliceous rocks in west Hunan and Hubei provinces during Late Ediacaran-Early Cambrian, and its geological significance of shale gas. Bulletin of Geological Science and Technology, 2020, 39(2):20-30.
[4] 张茜, 王剑, 余谦, 等. 扬子地台西缘盐源盆地下志留统龙马溪组黑色页岩硅质成因及沉积环境.地质论评, 2018, 64(3):610-622. ZHANG Q, WANG J, YU Q, et al. The silicon source and sedimentary environment of the Lower Silurian Longmaxi Formation in Yanyuan Basin, western edge of the Yangtze Platform. Geological Review, 2018, 64(3):610-622.
[5] 黄志诚, 黄钟瑾. 下扬子区五峰组火山碎屑岩与放射虫硅质岩. 沉积学报, 1991, 9(2):1-15. HUANG Z C, HUANG Z J. Pyroclastic rocks and radiolarian silicalites of Wufeng Formation in Lower Yangtze region. Acta Sedimentologica Sinica, 1991, 9(2):1-15.
[6] 高长林, 何将启. 北大巴山硅质岩的地球化学特征及其成因. 地球科学——中国地质大学学报, 1999, 24(3):246-250. GAO C L, HE J Q. Geochemical characteristics and genesis of siliceous rocks in northern of Daba mountain. Earth SciencesJournal of China University of Geosciences, 1999, 24(3):246250.
[7] 刘伟, 许效松, 冯心涛, 等. 中上扬子上奥陶统五峰组含放射虫硅质岩与古环境. 沉积与特提斯地质, 2010, 30(3):65-70. LIU W, XU X S, FENG X T, et al. Radiolarian bearing silicalites and paleoenvironment of Upper Ordovician Wufeng Formation in Middle Upper Yangtze. Sedimentary and Tethyan Geology, 2010, 30(3):65-70.
[8] 王淑芳, 邹才能, 董大忠, 等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 2014, 50(3):476-486. WANG S F, ZOU C N, DONG D Z, et al. Biogenic silica of organicrich shale in Sichuan Basin and its significance for shale gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):476-486.
[9] 王秀平, 牟传龙, 肖朝晖, 等.鄂西南地区五峰组-龙马溪组连续沉积特征. 天然气地球科学, 2019, 30(5):635-651. WANG X P, MOU C L, XIAO Z H, et al. Sedimentary characteristics of Ordovician Wufeng Formation-Longmaxi Formation in southwestern Hubei province. Natural Gas Geoscience, 2019, 30(5):635-651.
[10] 何贵松, 何希鹏, 高玉巧, 等. 中国南方3套海相页岩气成藏条件分析. 岩性油气藏, 2019, 31(1):57-68. HE G S, HE X P, GAO Y Q, et al. Analysis of accumulation conditions of three sets of marine shale gas in southern China. Lithologic Reservoirs, 2019, 31(1):57-68.
[11] 郑珊珊, 刘洛夫, 汪洋, 等. 川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[12] 王朋飞, 金璨, 臧小鹏, 等. 渝东南地区海相页岩有机质孔隙发育特征及演化. 岩性油气藏, 2020, 32(5):46-53. WANG P F, JIN C, ZANG X P, et al. Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing. Lithologic Reservoirs, 2020, 32(5):46-53.
[13] 高乔, 王兴志, 朱逸青, 等. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素. 岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reservoirs, 2019, 31(4):72-84.
[14] 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组页岩岩相类型与沉积环境. 石油学报, 2016, 37(5):572-586. ZHAO J H, JIN Z J, JIN Z K, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation in Sichuan Basin. Acta Petrolei Sinica, 2016, 37(5):572-586.
[15] 许涛, 韦恒叶, 张璇, 等. 中二叠统茅口组热液交代硅质岩成因-来自贵州桑树湾剖面角砾状硅质岩元素及硅同位素的证据. 石油学报, 2020, 41(4):446-456. XU T, WEI H Y, ZHANG X, et al. Genesis of hydrothermal replaced cherts in the Middle Permian Maokou Formation:Evidences from elements and silicon isotopes of brecciated cherts in Sangshuwan section, Guizhou province. Acta Petrolei Sinica, 2020, 41(4):446-456.
[16] 李红敬, 林正良, 解习农. 下扬子地区古生界硅岩地球化学特征及成因. 岩性油气藏, 2015, 27(5):232-239. LI H J, LIN L Z, XIE X N. Geochemical characteristics and origin of Paleozoic siliceous rocks in Lower Yangtze area. Lithologic Reservoirs, 2015, 27(5):232-239.
[17] BOSTROM K, PETERSON M N A. The origin of aluminumpoor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 1969, 7(5):427-447.
[18] MURRAY R W. Chemical criteria to identify the depositional environment of chert:General principles and applications. Sedimentary Geology, 1994, 90(3/4):213-232.
[19] ADACHI M, YAMAMOTO K, SUGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific:Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 1986, 47(1/2):125-148.
[20] YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 1987, 52(1/2):65-108.
[21] 张燕, 陈翠华, 刘树根, 等.贵州桑木场地区硅质岩地球化学特征及其成因探讨. 矿物岩石地球化学通报, 2013, 32(6):753-758. ZHANG Y, CHEN C H, LIU S G, et al. Geochemical characteristics and genesis discussion of the siliceous rock in the Sang Muchang area, Guizhou. China. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6):753-758.
[22] 黄虎, 杜远生, 杨江海, 等. 水城-紫云-南丹裂陷盆地晚古生代硅质岩沉积物地球化学特征及其地质意义. 地质学报, 2012, 86(12):1994-2010. HUANG H, DU Y S, YANG J H, et al. Geochemical features of siliceous sediments of the Shuicheng-Ziyun-Nandan rift basin in the Late Paleozoic and their tectonic implication. Acta Geologica Sinica, 2012, 86(12):1994-2010.
[23] BOSTROM K, KRAEMER T, GARTNER S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chemical Geology, 1973, 11(2):123-148.
[24] 张聪, 黄虎, 侯明才.地球化学方法在硅质岩成因与构造背景研究中的进展问题.成都理工大学学报(自然科学版), 2017, 44(3):294-304. ZHANG C, HUANG H, HOU M C. Progress and problems in the geochemical study on chert genesis for interpretation of tectonic background. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(3):294-304.
[25] 彭军, 伊海生, 夏文杰.扬子板块东南大陆边缘上震旦统热水成因硅质岩的地球化学标志. 成都理工学院学报, 2000, 27(1):8-14. PENG J, YI H S, XIA W J. Geochemical characteristics of the Upper Sinian hydrothermal chert on the southeastern continental margin of the Yangtze plate. Journal of Chengdu University of Technology, 2000, 27(1):8-14.
[26] 何俊国, 周永章, 杨志军, 等.藏南彭错林硅质岩地球化学特征及沉积环境分析. 吉林大学学报(地球科学版), 2009, 39(6):1056-1065. HE J G, ZHOU Y Z, YANG Z J, et al. Study on geochemical characteristics and depositional environment of Pengcuolin chert, southern Tibet. Journal of Jilin University(Earth Science Edition), 2009, 39(6):1056-1065.
[27] 张亚冠, 杜远生, 徐亚军, 等. 湘中震旦纪-寒武纪之交硅质岩地球化学特征及成因环境研究. 地质论评, 2015, 61(3):499-510. ZHANG Y G, DU Y S, XU Y J, et al. Geochemical characteristics of siliceous rocks during the Transition from Sinian(Ediacaran)to Cambrian in central Hunan and its implication for genesis and sedimentary environment. Geological Review, 2015, 61(3):499-510.
[28] CHEN D Z, QING H R, YAN X, et al. Hydrothermal venting and basin evolution(Devonian, South China):Constraints from rare earth element geochemistry of chert. Sedimentary Geology, 2006, 183(3/4):203-216.
[29] DOUVILLE E, BIENVENU P, CHARLOU J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 1999, 63(5):627-643.
[30] 宋史刚, 丁振举, 姚书振, 等. 碧口地块富铁硅岩REE及NdSr同位素组成及其古环境意义. 矿物岩石, 2008, 28(3):57-63. SONG S G, DING Z J, YAO S Z, et al. REE and Nd-Sr isotopic compositions of iron rich silicalites in Bikou terrane:Implication to ancient sedimentary environmental. Mineralogy and Petrology, 2008, 28(3):57-63.
[31] FLEET A J, RONA P A, BOSTROM K, et al. The rare earth element evidence in hydrothermal process at seafloor spreading centers. New York:Plenum Press, 1983:535-555.
[32] MURRAY R W, BUCHHOLTZ T, BRINK M R, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18(3):268-271.
[33] SUGISAKI R, YAMAMOTO K, ADACHI M. Triassic bedded cherts in central Japan are not pelagic. Nature, 1982, 298(5875):644-647.
[34] MURRAY R W, BUCHHOLTZ T, BRINK M R, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment:Assessing the influence of chemical fractionation during diagenesis. Geochimica et Cosmochimica Acta, 1992, 56(7):2657-2671.
[35] 赵建华, 金之钧, 金振奎, 等.四川盆地五峰组-龙马溪组含气页岩中石英成因研究. 天然气地球科学, 2016, 27(2):377386. ZHAO J H, JIN Z J, JIN Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales Sichuan Basin. Natural Gas Geoscience, 2016, 27(2):377-386.
[36] 刘江涛, 李永杰, 张元春, 等. 焦石坝五峰组龙马溪组页岩硅质生物成因的证据及其地质意义. 中国石油大学学报(自然科学版), 2017, 41(1):34-41. LIU J T, LI Y J, ZHANG Y C, et al. Evidences of biogenic silica of Wufeng-Longmaxi Formation shale in Qiaoshiba area and its geological significance. Journal of China University of Petroleum(Edition of Natural Sciences), 2017, 41(1):34-41.
[37] 杨宇宁, 王剑, 郭秀梅, 等.渝东北田坝地区五峰-龙马溪组页岩矿物学特征及其油气地质意义. 沉积学报, 2017, 35(4):772-778. YANG Y N, WANG J, GUO X M, et al. Mineralogical characteristics and petroleum geological significance of Wufeng-Longmaxi Formation shale in the Tianba area, northeast of Chongqing. Acta Sedimentologica Sinica, 2017, 35(4):772-778.
[38] 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 2018, 25(4):226-236. LU L F, QIN J Z, SHEN B J, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 2018, 25(4):226-236.
[39] 蔡全升, 陈孝红, 张保民, 等.鄂西宜昌地区五峰组-龙马溪组黑色岩系硅质来源及其油气地质意义.地质学报, 2020, 94(3):931-946. CAI Q S, CHEN X H, ZHANG B M, et al. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi formations in the Yichang area, western Hubei Province:Geological significance for shale gas. Acta Geologica Sinica, 2020, 94(3):931-946.
[40] 孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组龙马溪组为例. 地球科学, 2019, 44(11):3691-3707. SUN C X, NIN H K. LIU G X, et al. Quartz type and its control on shale gas enrichment and production:A case study of the WufengLongmaxi formations in the Sichuan Basin and its surrounding areas, China. Erath Science, 2019, 44(11):3691-3707.
[1] 张小琴, 李威, 王飞龙, 王宁, 徐耀辉, 刘岩, 程如蛟, 刘华秋. 辽东湾地区古近系烃源岩生物标志物特征及其地质意义[J]. 岩性油气藏, 2022, 34(1): 73-85.
[2] 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138.
[3] 李小佳, 邓宾, 刘树根, 吴娟, 周政, 焦堃. 川南宁西地区五峰组—龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6): 135-144.
[4] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(5): 11-21.
[5] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[6] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[7] 徐宇轩, 代宗仰, 胡晓东, 徐志明, 李丹. 川东北沙溪庙组天然气地球化学特征及地质意义——以五宝场地区为例[J]. 岩性油气藏, 2021, 33(1): 209-219.
[8] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[9] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[10] 郭娟, 赵迪斐, 梁孝柏, 杨坤, 李昊轩, 龙代玺. 页岩纳米孔隙的结构量化表征——以川东南地区五峰组为例[J]. 岩性油气藏, 2020, 32(5): 113-121.
[11] 黄彦杰, 白玉彬, 孙兵华, 黄礼, 黄昌武. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75.
[12] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[13] 李贤胜, 刘向君, 熊健, 李玮, 梁利喜. 层理对页岩纵波特性的影响[J]. 岩性油气藏, 2019, 31(3): 152-160.
[14] 王朋飞, 姜振学, 杨彩虹, 金璨, 吕鹏, 王海华. 重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征[J]. 岩性油气藏, 2019, 31(3): 27-36.
[15] 郑珊珊, 刘洛夫, 汪洋, 罗泽华, 王曦蒙, 盛悦, 许同, 王柏寒. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏, 2019, 31(3): 55-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .
[2] 朱小燕, 王斌婷, 胡建基, 苟迎春. 南庄地区三叠系长6 储集层研究[J]. 岩性油气藏, 2007, 19(1): 77 -80 .
[3] 谢锐杰. 东营凹陷民丰地区沙三下段层序地层与沉积相研究[J]. 岩性油气藏, 2008, 20(3): 39 -43 .
[4] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[5] 曲永春, 王祝文. 同位素沾污面积的归位计算方法及其应用[J]. 岩性油气藏, 2008, 20(2): 132 -136 .
[6] 冯永春,王建民. 鄂尔多斯盆地志丹油田永金地区长6 储层微观孔隙成因类型及特征[J]. 岩性油气藏, 2008, 20(4): 47 -52 .
[7] 吕渐江,唐海,段永刚,吕栋梁,蔡星星,杨波. 运用二级模糊多目标综合评判方法预测低渗透气藏水锁损害程度[J]. 岩性油气藏, 2010, 22(4): 120 -124 .
[8] 李联新,胡红,罗泽松. 川东高峰场构造长兴组生物礁储层测井评价[J]. 岩性油气藏, 2008, 20(4): 118 -122 .
[9] 李晓春,王祝文,岳崇旺,陈博涛,丁阳. Hilbert-Huang 变换在提取声波测井信号储集特性中的应用[J]. 岩性油气藏, 2009, 21(1): 107 -111 .
[10] 王洪亮,王军,杨英波,罗兴平,万丙乾,王炜. 测井技术在X 气田油藏描述中的应用[J]. 岩性油气藏, 2009, 21(3): 76 -81 .