岩性油气藏 ›› 2022, Vol. 34 ›› Issue (6): 6071.doi: 10.12108/yxyqc.20220605
闫建平1,2, 罗静超1,2, 石学文3, 钟光海3, 郑马嘉4, 黄毅5, 唐洪明1, 胡钦红6
YAN Jianping1,2, LUO Jingchao1,2, SHI Xuewen3, ZHONG Guanghai3, ZHENG Majia4, HUANG Yi5, TANG Hongming1, HU Qinhong6
摘要: 通过岩心、电成像测井及常规测井等资料,对川南泸州地区奥陶系五峰组—志留系龙马溪组深层页岩地层开展了电成像测井图像上的裂缝类型及组合特征、裂缝信息提取、裂缝发育模式等研究,分析了不同裂缝发育模式的声波测井响应及对后期压裂改造的影响。研究结果表明:①川南泸州地区奥陶系五峰组—志留系龙马溪组页岩随地层深度增加裂缝倾角逐渐减小、构造裂缝种类复杂程度逐渐降低,离构造活动强烈带较近的井靶体段可见明显的中、高角度构造裂缝发育。②按照构造裂缝和层理发育的关系,可将研究区裂缝发育模式分为构造裂缝与层理混合发育型、中密度层理型、紧密层理型、强构造裂缝弱层理型、大尺度构造裂缝型、致密型等6种,其中构造裂缝与层理混合发育型和中密度层理型是压裂的优选类型。③引入L曲线(σ=k/n,k为常数,σ为平均开度,n为层理条数),σ和n值的范围能够有效表征构造裂缝和层理的相对发育程度,从而可在坐标系内对不同裂缝发育模式进行划分与识别。④不同裂缝发育模式在纵、横波时差和岩石力学性质方面具有一定差异:构造裂缝与层理混合发育型和强构造裂缝弱层理型的纵波时差小于中密度层理型和紧密层理型,中密度层理型的抗剪强度小于紧密层理型。
中图分类号:
[1] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1):1-14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14. [2] 杜悦, 崔欢, 袁渊, 等. 天然裂缝对页岩气井产能的影响评价[J]. 天然气工业, 2021, 41(增刊1):118-123. DU Yue, CUI Huan, YUAN Yuan, et al. Influence of natural fractures on the productivity of shale gas wells[J]. Natural Gas Industry, 2021, 41(Suppl 1):118-123. [3] 朱华, 杨光, 苑保国, 等. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10):1475- 1485. ZHU Hua, YANG Guang, YUAN Baoguo, et al. Geological conditions, resource potential and exploration direction of conventional gas in Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(10):1475-1485. [4] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3):525- 532. LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3):525- 532. [5] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1):1-6. WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1):1-6. [6] 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组-龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1):43-51. DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi formations in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1):43-51. [7] 刘玉奎, 郭肖, 唐林, 等. 天然裂缝对气井产能影响研究[J]. 油气藏评价与开发, 2014, 4(6):25-28. LIU Yukui, GUO Xiao, TANG Lin, et al. Research on the influence of natural fracture on gas well productivity[J]. Reservoir Evaluation and Development, 2014, 4(6):25-28. [8] 马军. 页岩裂缝成因及其对含气性影响:以渝东南地区阳春沟构造带五峰-龙马溪组为例[J]. 油气藏评价与开发, 2020, 10(3):126-134. MA Jun. Origin of shale fractures and its influence on gas-bearing properties:A case study of Wufeng-Longmaxi Formation in Yangchungou structural belt in southeast Chongqing[J]. Reservoir Evaluation and Development, 2020, 10(3):126-134. [9] 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比:以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39(4):631-640. WANG Ruyue, HU Zongquan, LIU Jingshou, et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shales:A case study of the Lower Cambrian in Cengong area, northern Guizhou province[J]. Oil & Gas Geology, 2018, 39(4):631-640. [10] 卞晓冰, 侯磊, 蒋廷学, 等. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6):161-168. BIAN Xiaobing, HOU Lei, JIANG Tingxue, et al. Influencing factors of fracture geometry in deep shale gas wells[J]. Lithologic Reservoirs, 2019, 31(6):161-168. [11] 王玉满, 黄金亮, 李新景, 等.四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J]. 天然气工业, 2015, 35(9):8-15. WANG Yuman, HUANG Jinliang, LI Xinjing, et al. Quantitative characterization of fracture and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(9):8-15. [12] 管全中, 董大忠, 张华玲, 等. 基于改进的岩石物理模型表征页岩天然裂缝特征[J]. 天然气工业, 2021, 41(2):56-64. GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Characterizing the characteristics of natural fractures in shale based on the modified petrophysical model[J]. Natural Gas Industry, 2021, 41(2):56-64. [13] 李庆辉, 李少轩, 刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏, 2021, 28(3):130-138. LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fra-cturing stimulation[J]. Special Oil & Gas Reservoirs, 2021, 28(3):130-138. [14] 闫建平, 言语, 司马立强, 等. 泥页岩储层裂缝特征及其与"五性" 之间的关系[J]. 岩性油气藏, 2015, 27(3):87-93. YAN Jianping, YAN Yu, SIMA Liqiang, et al. Relationship between fracture characteristics and"five-property"of shale reservoir[J]. Lithologic Reservoirs, 2015, 27(3):87-93. [15] 熊涛. 黔北凤冈地区下寒武统牛蹄塘组页岩裂缝发育特征[J]. 中国煤炭地质, 2020, 32(8):38-43. XIONG Tao. Lower Cambrian Niutitang Formation shale fissure development features in Fenggang area, northern Guizhou[J]. Coal Geology of China, 2020, 32(8):38-43. [16] 赖富强, 夏炜旭, 龚大建, 等. 基于小波高频属性的泥页岩裂缝测井识别方法研究[J]. 地球物理学进展, 2020, 35(1):124- 131. LAI Fuqiang, XIA Weixu, GONG Dajian, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J]. Progress in Geophysics(in Chinese), 2020,35(1):124-131. [17] ZHANG Shaolong, YAN Jianping, CAI Jingong, et al. Fracture characteristics and logging identification of lacustrine shale in the Jiyang Depression, Bohai Bay Basin, eastern China[J]. Marine and Petroleum Geology, 2021, 132(10):1-15. [18] LI Yong, WANG Zhuangsen, PAN Zhejun, et al. Pore structure and its fractal dimensions of transitional shale:A cross-section from east margin of the Ordos Basin, China[J]. Fuel, 2019, 241:417-431. [19] ZHANG Shudong,REN Xingguo,LUO Li,et al. Loggingbased identification and evaluation of karst fractures in the eastern Right Bank of the Amu Darya River, Turkmenistan[J]. Natural Gas Industry B, 2019, 6(1):58-63. [20] 王建君, 李井亮, 李林, 等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5):122-132. WANG Jianjun, LI Jingliang, LI Lin, et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area[J]. Lithologic Reservoirs, 2020, 32(5):122-132. [21] 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2):215-232. SHANG Xiaofei, LONG Shengxiang, DUAN Taizhong. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs[J]. Natural Gas Geoscience, 2021, 32(2):215-232. [22] 窦亮彬, 杨浩杰, XIAO Yingjian, 等. 页岩储层脆性评价分析及可压裂性定量评价新方法研究[J]. 地球物理学进展, 2021, 36(2):576-584. DOU Liangbin, YANG Haojie, XIAO Yingjian, et al. Probability study of formation brittleness and new quantitative evaluation of fracability for shale reservoirs[J]. Progress in Geophysics(in Chinese), 2021, 36(2):576-584. [23] 周小金, 雍锐, 范宇, 等. 天然裂缝对页岩气水平井压裂的影响及工艺调整[J].中国石油勘探, 2020, 25(6):94-104. ZHOU Xiaojin, YONG Rui, FAN Yu, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J]. China Petroleum Exploration, 2020, 25(6):94-104. [24] ZHAO Jinzhou, LI Yongming, WANG Song, et al. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir[J]. Natural Gas Industry B, 2014, 1(1):89- 95. [25] MENG Qingfeng, HAO Fang, TIAN Jinqiang. Origins of nontectonic fractures in shale[J]. Earth-Science Reviews, 2021, 222:103825. [26] 周彤, 王海波, 李凤霞, 等. 层理发育的页岩气储集层压裂裂缝扩展模拟[J]. 石油勘探与开发, 2020, 47(5):1039-1051. ZHOU Tong, WANG Haibo, LI Fengxia, et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5):1039-1051. [27] 李国军, 王祥, 周嵩锴, 等. EMI成像测井在川西侏罗纪储层中的应用[J]. 断块油气田, 2004, 11(6):79-80. LI Guojun, WANG Xiang, ZHOU Songkai, et al. Application of the EMI image logging technique to the Jurassic reservoir of westSichuan[J]. Fault-Block Oil & Gas Field, 2004, 11(6):79-80. [28] 曹宇, 张超谟, 张占松, 等. 裂缝型储层电成像测井响应三维数值模拟[J]. 岩性油气藏, 2014, 26(1):92-95. CAO Yu, ZHANG Chaomo, ZHANG Zhansong, et al. Threedimensional numerical simulation of electrical imaging logging response in fractured reservoir[J]. Lithologic Reservoirs, 2014, 26(1):92-95. [29] 邹长春, 史謌. 一类正弦曲线的Hough变换快速检测方法[J]. 计算机工程与应用, 2002, 39(4):1-3. ZOU Changchun, SHI Ge. A fast approach to detect a kind of sinusoidal curves using hough transform[J]. Computer Engineering and Applications, 2002, 39(4):1-3. [30] 闫建平, 蔡进功, 首祥云, 等. 成像测井图像中的裂缝信息智能拾取方法[J]. 天然气工业, 2009, 29(3):51-53. YAN Jianping, CAI Jingong, SHOU Xiangyun, et al. Intelligent picking method of the fracture information from imaging logging[J]. Natural Gas Industry, 2009, 29(3):51-53. |
[1] | 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132. |
[2] | 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110. |
[3] | 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24. |
[4] | 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39. |
[5] | 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22. |
[6] | 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11. |
[7] | 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130. |
[8] | 张梦琳, 李郭琴, 何嘉, 衡德. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151. |
[9] | 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51. |
[10] | 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138. |
[11] | 李小佳, 邓宾, 刘树根, 吴娟, 周政, 焦堃. 川南宁西地区五峰组—龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6): 135-144. |
[12] | 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(5): 11-21. |
[13] | 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188. |
[14] | 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146. |
[15] | 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137. |
|