岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 11–21.doi: 10.12108/yxyqc.20210502

• 油气地质 • 上一篇    下一篇

湘西北地区五峰组—龙马溪组生物地层特征及勘探意义

张兵1,2,3, 唐书恒1,2,3, 郗兆栋1,2,3, 蔺东林1,2,3, 叶亚培1,2,3   

  1. 1. 中国地质大学(北京) 能源学院, 北京 100083;
    2. 海相储层演化与油气富集机理教育部重点实验室, 北京 100083;
    3. 非常规天然气地质评价与开发工程北京市重点实验室, 北京 100083
  • 收稿日期:2020-11-10 修回日期:2021-01-31 出版日期:2021-10-01 发布日期:2021-09-30
  • 通讯作者: 唐书恒(1965-),男,博士,教授,主要从事非常规天然气地质与开发方面的研究。Email:tangsh@cugb.edu.cn。 E-mail:tangsh@cugb.edu.cn
  • 作者简介:张兵(1995-),男,中国地质大学(北京)在读硕士研究生,研究方向为非常规天然气地质。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)能源学院。Email:1224223584@qq.com
  • 基金资助:
    国家科技重大专项“四川盆地及周缘页岩气富集规律与重点目标评价”(编号:2017ZX05035)资助

Biostratigraphic characteristics and exploration significance of Wufeng-Longmaxi Formation in northwestern Hunan

ZHANG Bing1,2,3, TAN G Shuheng1,2,3, XI Zhaodong1,2,3, LIN Donglin1,2,3, YE Yapei1,2,3   

  1. 1. School of Energy Resources, China University of Geosciences(Beijing), Beijing 100083, China;
    2. Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education, Beijing 100083, China;
    3. Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, Beijing 100083, China
  • Received:2020-11-10 Revised:2021-01-31 Online:2021-10-01 Published:2021-09-30

摘要: 湘西北地区上奥陶统五峰组-下兰多维列统龙马溪组黑色页岩广泛发育,具有较好的页岩气勘探开发前景。为研究其生物地层特征,开展了XY-3井的化石种类分析,结合笔石与自然伽马(GR)测井曲线,建立了研究区生物笔石序列,并根据各笔石带的有机质丰度、矿物组分、沉积环境的变化,明确研究区页岩气的有利富集层段。结果表明:①研究区五峰组-龙马溪组可划分为8个笔石带:WF2,WF3,WF4,LM2-LM3,LM4,LM5,LM6,LM7,受湘鄂水下高地隆升的影响,研究区缺失LM1带。②WF2-WF3,LM2-LM4笔石带沉积于贫氧化环境,岩性为中碳硅质页岩相。WF4笔石带沉积于氧化环境,岩性为低碳混合质页岩相。LM5-LM7笔石带沉积于氧化环境,岩性为低碳黏土质页岩相。WF2-WF3,LM2-LM4笔石带具有高TOC、高脆性、高孔隙度特征,具有一定的生烃潜力和可压裂性,可以作为页岩气勘探的有利层段。③相比于长宁等地区,研究区富有机质层段厚度相对较薄,有机质丰度相对偏低,因其被湘鄂水下高地影响,较氧化的水体不利于有机质的保存,部分富有机质层段缺失。该研究成果可为湘西北地区的页岩气勘探提供借鉴。

关键词: 笔石, 生物地层, 水下高地, 五峰组—龙马溪组, 上奥陶统, 兰多维列统, 湘西北地区

Abstract: The black shale is widely developed in Wufeng Formation of Upper Ordovician and Longmaxi Formation of Lower Llandovery in northwestern Hunan, which has good prospects for shale gas exploration and development. In order to study its biostratigraphic characteristics, the fossil species of well XY-3 were analyzed. Combined with graptolite and natural gamma(GR) logging curves, the sequence of biological graptolite in the study area was established. According to the changes of organic matter abundance, mineral composition and sedimentary environment of each graptolite zone, the favorable enrichment intervals of shale gas in the study area were identified. The results show that:(1) Wufeng-Longmaxi Formation in the study area can be divided into eight graptolite zones:WF2, WF3, WF4, LM2-LM3, LM4, LM5, LM6, LM7. Affected by the uplift of underwater highland in Hunan and Hubei, the study area lacks LM1 zone.(2) WF2-WF3 and LM2-LM4 graptolite zones were deposited in poor oxidation environment, and the lithology was medium carbon siliceous shale facies. WF4 graptolite zone was deposited in oxidation environment, and its lithology was low-carbon mixed shale facies. LM5-LM7 graptolite zone was deposited in oxidation environment, and its lithology was low-carbon clay shale facies. WF2-WF3 and LM2-LM4 graptolite zones were characterized by high TOC, high brittleness and high porosity, and have certain hydrocarbon generation potential and fracturing ability, which can be used as favorable intervals for shale gas exploration(. 3) Compared with Changning and other areas, the thickness of organic matter rich layers in the study area was relatively thin, and the abundance of organic matter was relatively low. Because it was affected by the underwater highlands in Hunan and Hubei, the relatively oxidized water body was not conducive to the preservation of organic matter, and some organic matter rich layers were missing. The research results can provide reference for shale gas exploration in northwestern Hunan.

Key words: graptolite, biostratigraphy, underwater highland, Wufeng-Longmaxi Formation, Upper Ordovician, Llandovery, northwestern Hunan

中图分类号: 

  • TE122
[1] 邹才能, 杨智, 朱如凯, 等.中国非常规油气勘探开发与理论技术进展.地质学报, 2015, 89(6):979-1007. ZOU C N, YANG Z, ZHU R K, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies. Acta Geologica Sinica, 2015, 89(6):979-1007.
[2] 庞维华, 丁孝忠, 高林志, 等.湖南下寒武统层序地层格架与古环境演化变迁.中国地质, 2011, 38(3):560-576. PANG W H, DING X Z, GAO L Z, et al. Characteristics of sequence stratigraphy and plaeoenvironmental evolution of Lower Cambrian strata in Hunan province. Geology in China, 2011, 38(3):560-576.
[3] 秦明阳, 郭建华, 何红生, 等.四川盆地外复杂构造区页岩气地质条件及含气性特征:以湘西北五峰组-龙马溪组为例. 中南大学学报, 2018, 49(8):1979-1990. QIN M Y, GUO J H, HE H S, et al. Geological conditions and gas-bearing characteristics of shale gas in complex structural areas out of Sichuan Basin:A case of Wufeng-Longmaxi Formation in northwestern Hunan, China. Journal of Central South University, 2018, 49(8):1979-1990.
[4] 翟刚毅, 包书景, 庞飞, 等.贵州遵义地区安场向斜"四层楼"页岩油气成藏模式研究.中国地质, 2017, 44(1):1-12. ZHAI G Y, BAO S J, PANG F, et al. Peservoir-forming pattern of "four-storey" hydrocarbon accumulation in Anchang syncline of northern Guizhou province. Geology in China, 2017, 44(1):1-12.
[5] 王剑, 段太忠, 谢渊, 等.扬子地块东南缘大地构造演化及其油气地质意义.地质通报, 2012, 31(11):1739-1749. WANG J, DUAN T Z, XIE Y, et al. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze block. Geological Bulletin of China, 2012, 31(11):1739-1749.
[6] 周志, 姜振学, 李世臻, 等.鄂西建始地区五峰组-龙马溪组黑色页岩生物地层特征.中国科学:地球科学, 2021, 46(2):432-443. ZHOU Z, JIANG Z X, LI S Z, et al. Biostratigraphic characteristics of black graptolite shale in Wufeng Formation and Longmaxi Formation in Jianshi area of west Hubei. Science China:Earth Science, 2021, 46(2):432-443.
[7] 王红岩, 郭伟, 梁峰, 等.川南自201井区奥陶系-志留系间黑色页岩生物地层.地层学杂志, 2018, 42(4):455-460. WANG H Y, GUO W, LIANG F, et al. Biostratigraphy of Ordovician-Silurian black shale at well Zi 201, southern Sichuan. Journal of Stratigraphy, 2018, 42(4):455-460.
[8] 邹才能, 龚剑明, 王红岩, 等.笔石生物演化与地层年代标定在页岩气勘探开发中的重大意义.中国石油勘探, 2019, 24(1):1-6. ZOU C N, GONG J M, WANG H Y, et al. Importance of graptolite evolution and biostratigraphic calibration on shale gas exploration. China Petroleum Exploration, 2019, 24(1):1-6.
[9] 陈旭, 戎嘉余, 樊隽轩, 等.奥陶-志留系界线地层生物带的全球对比.古生物学报, 2000, 39(1):100-114. CHEN X, RONG J Y, FAN J X, et al. A Global correlation of biozones across the Ordovician-Silurian boundary. Acta Palaeontologica Sinica, 2000, 39(1):100-114.
[10] 聂海宽, 李东晖, 姜涛, 等.基于笔石带特征的页岩等时地层测井划分方法及意义:以四川盆地及其周缘五峰组-龙马溪组为例.石油学报, 2020, 41(3):274-281. NIE H K, LI D H, JIANG T, et al. Logging isochronous stratigraphic division of shale based on characteristics of graptolite zones and its significance:A case study of Wufeng FormationLongmaxi Formation in Sichuan Basin and its periphery. Acta Petrolei Sinica, 2020, 41(3):274-281.
[11] CHEN X, ZHANG Y D, FAN J X, et al. Onset of the Kwangsian Orogeny as evidenced by biofacies and lithofacies. Science China:Earth Sciences, 2012, 55(10):1592-1600.
[12] CHEN X, BERGSTRM S M, ZHANG Y D, et al. Aregional tectonic vent of Katian(Late Ordovician)age across three major blocks of China. Chinese Science Bulletin, 2013, 58(34):4292-4299.
[13] 陈洪德, 郭彤楼, 侯明才, 等.中上扬子叠合盆地沉积充填过程与物质分布规律.北京:科学出版社, 2012. CHEN H D, GUO T L, HUO M C, et al. Sedimentary filling process and material distribution in the middle upper Yangtze superimposed basin. Beijing:Science Press, 2012.
[14] CHEN C, MU C L, ZHOU K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China. Marine & Petroleum Geology, 2016, 76:159-175.
[15] 陈旭, 樊隽轩, 张元动, 等.五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 2015, 39(4):351-358. CHEN X, FAN J X, ZHANG Y D, et al. Subdivision and delineation of the Wufeng and Longmaxi black shale in the subsurface areas of the Yangtze platform. Journal of Stratigraphy, 2015, 39(4):351-358.
[16] 穆恩之, 李积金, 葛梅御, 等. 中国笔石. 北京:科学出版社, 2002. MU E Z, LI J J, GE M Y, et al. China of Graptolite. Beijing:Science Press, 2002.
[17] 易定鑫, 田景春, 井翠, 等.五峰组-龙马溪组笔石带划分与沉积环境的意义:以重庆武隆接龙剖面为例.东北石油大学学报, 2019, 43(6):33-43. YI D X, TIAN J C, JING C, et al. Graptolite biostratigraphy and sedimentary environment significance:A case study from the Wufeng Formation-Longmaxi Formation of Jielong section in Wulong, southeastern Chongqing. Journal of Northeast Petroleum University, 2019, 43(6):33-43.
[18] 周志, 翟刚毅, 石砥石, 等.鄂西-渝东北地区五峰组-龙马溪组页岩气成藏地质条件分析.石油实验地质, 2019, 41(1):1-9. ZHUO Z, ZHAI G Y, SHI D S, et al. Shale gas reservoir geology of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in western Hubei and northeastern Chongqing. Petroleum Geology and Experiment, 2019, 41(1):1-9.
[19] 杨洋, 石万忠, 张晓明, 等.页岩岩相的测井曲线识别方法:以焦石坝地区五峰组-龙马溪组为例.岩性油气藏, 2021, 33(2):135-146. YANG Y, SHI W Z, ZHANG X M et al. Identification method of shale lithofacies by logging curve:A case study from WufengLongmation in Jiaoshiba area. Lithologic Reservoirs, 2021, 33(2):135-146.
[20] 车世琦.测井资料用于页岩岩相划分及识别:以涪陵气田五峰组-龙马溪组为例.岩性油气藏, 2018, 30(1):121-132. CHE S Q. Shale lithofacies identification and classification by using logging data:A case of Wufeng-Longmaxi Formation in Fuling gas field, Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):121-132.
[21] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrim of pore typesand networks in mudrocks and a descriptive classification for matrixrelated mudrock pores. AAPG Bulletin, 2012, 96(6):1071-1098.
[22] 朱逸青, 王兴志, 冯明友, 等.川东地区下古生界五峰组-龙马溪组页岩岩相划分及其与储层关系.岩性油气藏, 2016, 28(5):59-66. ZHU Y Q, WANG X Z, FENG M Y, et al. Lithofacies classification and its relationship with reservoir of the Lower Paleozoic Wufeng-Longmaxi Formation in the eastern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):59-66.
[23] 高乔, 王兴志, 朱逸青, 等.川南地区龙马溪组元素地球化学特征及有机质富集主控因素.岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reservoirs, 2019, 31(4):72-84.
[24] 何贵松, 万静雅, 刘娜娜, 等.川南地区南页1井五峰组-龙马溪组页岩特征与生物地层.地层学杂志, 2019, 43(4):377-387. HE G S, WAN J Y, LIU N N, et al. Characteristics and biostratigraphy of Wufeng-Longmaxi Formation shale in Nanye well 1 of nanchuan arra.Journal of Stratigraphy, 2019, 43(4):377-387.
[25] 罗超, 王兰生, 石学文, 等.长宁页岩气田宁211井五峰组-龙马溪组生物地层.地层学杂志, 2017, 41(2):142-152. LUO C, WANG L S, SHI X W, et al. Biostratigraphy of the Wufeng to Longmaxi Formation at well Ning 211 of Changning shale gas field. Journal of Stratigraphy, 2017, 41(2):142-152.
[26] 梁峰, 王红岩, 拜文华, 等.川南地区五峰组-龙马溪组页岩笔石带对比及沉积特征.天然气工业, 2017, 37(7):21-26. LIANG F, WANG H Y, BAI W H, et al. Graptolite correlation and sedimentary characteristics of Wufeng-Longmaxi shale in southern Sichuan Basin. Natural Gas Industry,2017, 37(7):21-26.
[27] 陈旭, 樊隽轩, 王文卉, 等.黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式.中国科学:地球科学, 2017, 47(6):720-732. CHEN X, FAN J X, WANG W H, et al. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China. Science China Earth Sciences, 2017, 47(6):720-732.
[28] 武瑾, 梁峰, 吝文, 等.渝东北地区巫溪2井五峰组-龙马溪组页岩气储层及含气性特征.石油学报, 2017, 38(5):512-524. WU J, LIANG F, LIN W, et al. Reservoirs characteristics and gas-bearing capacity of Wufeng-Longmaxi Formation shale in well WX-2, northeast Chongqing area. Acta Petrolei Sinica, 2017, 38(5):512-524.
[29] 郭少斌, 王义刚.鄂尔多斯盆地石炭系本溪组页岩气成藏条件及勘探潜力.石油学报, 2013, 34(5):445-452. GUO S B, WANG Y N. Shale gas accumulation conditions and exploration potential of Carboniferous Benxi Formation in Ordos Basin. Acta Petrolei Sinica, 2013, 34(5):445-452.
[1] 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138.
[2] 李小佳, 邓宾, 刘树根, 吴娟, 周政, 焦堃. 川南宁西地区五峰组—龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6): 135-144.
[3] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[4] 孟凡洋, 陈科, 包书景, 李浩涵, 张聪, 王劲铸. 湘西北复杂构造区下寒武统页岩含气性及主控因素分析——以慈页1井为例[J]. 岩性油气藏, 2018, 30(5): 29-39.
[5] 彭波, 刘羽琛, 漆富成, 王振云. 湘西北地区新元古界陡山沱组页岩气成藏条件[J]. 岩性油气藏, 2017, 29(4): 47-54.
[6] 黄俨然,杨荣丰,肖正辉,余 烨,杨 仙. 湘西北下寒武统牛蹄塘组页岩含气性影响因素分析[J]. 岩性油气藏, 2015, 27(4): 11-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[2] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[3] 郭康良, 郭旗, 程时清. 凝析气藏水平井产能计算模型及方法研究[J]. 岩性油气藏, 2007, 19(1): 120 -123 .
[4] 毛明陆, 杨亚娟, 张艳. 试论鄂尔多斯盆地三叠系岩性油藏分析的几项地质关键技术[J]. 岩性油气藏, 2007, 19(4): 27 -33 .
[5] 刘丽娟, 王山山. 广义S 变换窗函数的分析和改进[J]. 岩性油气藏, 2007, 19(2): 76 -79 .
[6] 王祝文, 刘菁华, 黄茜. 确定粘土矿物含量的自然伽马能谱测井方法[J]. 岩性油气藏, 2007, 19(2): 108 -111 .
[7] 杨 华,刘显阳,张才利,韩天佑,惠 潇. 鄂尔多斯盆地三叠系延长组渗透岩性油藏主控因素及其分布规律[J]. 岩性油气藏, 2007, 19(3): 1 -6 .
[8] 杨国臣,于炳松. 隐蔽油气圈闭勘探之发展现状[J]. 岩性油气藏, 2008, 20(3): 6 -11 .
[9] 金凤鸣,赵贤正,邹伟宏,卢学军,史原鹏,曹兰柱,芦丽菲. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践( Ⅱ)———“四元成藏”机理[J]. 岩性油气藏, 2007, 19(3): 23 -27 .
[10] 罗月明,李志明,蒋宏,施伟军,梁海军. 准噶尔盆地沙窝地下侏罗统三工河组储层特征[J]. 岩性油气藏, 2008, 20(3): 27 -33 .