岩性油气藏 ›› 2022, Vol. 34 ›› Issue (2): 141–151.doi: 10.12108/yxyqc.20220213

• 地质勘探 • 上一篇    下一篇

川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素

张梦琳1, 李郭琴1, 何嘉1, 衡德2   

  1. 1. 中国石油集团川庆钻探工程有限公司 地质勘探开发研究院, 成都 610051;
    2. 中国石油西南油气田分公司 四川长宁天然气开发有限责任公司, 成都 610000
  • 收稿日期:2021-11-13 修回日期:2022-01-25 出版日期:2022-04-01 发布日期:2022-03-14
  • 通讯作者: 李郭琴(1987-),女,硕士,工程师,主要从事页岩气勘探开发综合地质方面的研究工作。Email:791208869@qq.com。 E-mail:791208869@qq.com
  • 作者简介:张梦琳(1987-),女,工程师,主要从事页岩气勘探开发综合地质研究方面的工作。地址:(610051)四川省成都市建设北路一段83号地质勘探开发研究院。Email:17284551@qq.com
  • 基金资助:
    国家自然科学基金“海相深层油气富集机理与关键工程技术基础研究”(编号:U19B6003)资助

Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin

ZHANG Menglin1, LI Guoqin1, HE Jia1, HENG De2   

  1. 1. Research Institute of Geological Exploration and Development, CNPC Chuanqing Drilling Engineering Co., Ltd., Chengdu 610051, China;
    2. Sichuan Changning Natural Gas Development Co., Ltd., PetroChina Southwest Oil & Gas Field Company, Chengdu 610000, China
  • Received:2021-11-13 Revised:2022-01-25 Online:2022-04-01 Published:2022-03-14

摘要: 综合利用地震、钻井、测井及岩心分析化验资料,分析了四川盆地西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组的构造、沉积、储层及可改造性等基本地质特征,探讨了页岩气富集主控因素及成藏模式。研究结果表明:①天宫堂构造优质页岩集中分布在五峰组—龙马溪组龙一1亚段,Ⅰ类储层主要发育于龙一11—龙一13小层,厚度为0.8~17.0 m,具典型的高TOC含量、含气性好、高脆性矿物的特征。②天宫堂构造经历了晚白垩世前快速沉降、深埋藏和大量排烃阶段,形成早期富集型超压页岩气藏;晚白垩世后经2期抬升改造,早期富集型超压页岩气藏逐步向高压—常压页岩气藏调整。③研究区保存条件受地层倾角与宫1号断层的影响,造成不同构造部位页岩气差异富集。④研究区为“早期深埋藏促富集,后期隆升调富集、保存条件控富集”的背斜构造型成藏模式,构造南西翼是下步页岩气勘探开发的潜在有利区。

关键词: 富集主控因素, 页岩气, 五峰组—龙马溪组, 奥陶系, 志留系, 天宫堂构造, 川西南

Abstract: The data of seismic, drilling, logging and core analysis and test were comprehensively used to study the structure, deposition and basic reservoir geological characteristics of Ordovician Wufeng-Silurian Longmaxi Formation in Tiangongtang structure in southwestern margin of Sichuan Basin, and the main controlling factors of shale gas enrichment and accumulation model were discussed. The results show that:(1) The high-quality shale in Tiangongtang structure is mainly developed in O3w-S1l1-1. Type Ⅰ reservoir is mainly developed in S1l1-1-1-S1l1-1-3 layers, with a thickness of 0.8-17.0 m, and characterized by high TOC content, good gas-bearing property and highly brittle minerals.(2) Tiangongtang structure has experienced rapid subsidence, deep burial and a large amount of hydrocarbon expulsion before the Late Cretaceous, forming an early enriched overpressure shale gas reservoir. After the Late Cretaceous, it was uplifted and reformed in two phases, and the early enriched overpressure shale gas reservoir gradually transformed to high pressure-normal pressure shale gas reservoir.(3) The preservation conditions of Tiangongtang structure are affected by stratigraphic dip angle and Gong-1 fault, resulting in differential enrichment of shale gas in different structural zones.(4) Tiangongtang structure is an anticline structure-type accumulation model of "early deep burial promotes enrichment, later uplift adjusts enrichment, and preservation conditions control enrichment". The southwest tip of the structure is a potential favorable area for next shale gas exploration and development.

Key words: main controlling factors of enrichment, shale gas, Wufeng-Longmaxi Formation, Ordovician, Silurian, Tiangongtang structure, southwestern Sichuan Basin

中图分类号: 

  • TE122.1
[1] 邹才能, 赵群, 丛连铸, 等.中国页岩气开发进展、潜力及前景[J].天然气工业, 2021, 41(1):1-14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14.
[2] 蒲泊伶, 董大忠, 王凤琴, 等.川南地区龙马溪组沉积亚相精细划分及地质意义[J].中国石油大学学报(自然科学版), 2020, 44(3):15-25. PU Boling, DONG Dazhong, WANG Fengqin, et al. Re-division and evolution of sedimentary subfacies of Longmaxi shale in southern Sichuan Basin[J]. Journal of China University of Petroleum(Edition of Natural Sciences), 2020, 44(3):15-25.
[3] 李亚丁.长宁区块下古生界龙马溪组及筇竹寺组页岩储层特征研究及评价[D].成都:西南石油大学, 2017. LI Yading. Research and evaluation of shale reservoir characteristics of Longmaxi and Qiongzhusi Formation in the Lower Paleozoic of Changning block[D]. Chengdu:Southwest Petroleum University, 2017.
[4] 郑珊珊, 刘洛夫, 汪洋, 等.川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素[J].岩性油气藏, 2019, 31(3):55-65. ZHENG Shanshan, LIU Luofu, WANG Yang, et al. Characteristics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin[J]. Lithologic Reservoirs, 2019, 31(3):55-65.
[5] 魏祥峰, 李宇平, 魏志红, 等.保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J].石油实验地质, 2017, 39 (2):147-153. WEI Xiangfeng, LI Yuping, WEI Zhihong, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2):147-153.
[6] 庹秀松, 陈孔全, 罗顺社, 等.四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件[J].石油与天然气地质, 2020, 41 (5):1017-1026. TUO Xiusong, CHEN Kongquan, LUO Shunshe, et al. Structural characteristics of Qiyueshan fault and shale gas preservation at the southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(5):1017-1026.
[7] 马新华, 谢军, 雍锐, 等.四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J].石油勘探与开发, 2020, 47 (5):841-854. MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5):841-854.
[8] 杨洪志, 赵圣贤, 刘勇, 等.泸州区块深层页岩气富集高产主控因素[J].天然气工业, 2019, 39(11):55-62. YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11):55-62.
[9] 郭旭升.南方海相页岩气"二元富集"规律:四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报, 2014, 88(7):1209-1218. GUO Xusheng. Rules of two-factor enrichment for marine shale gas in southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7):1209-1218.
[10] 王志刚.涪陵页岩气勘探开发重大突破与启示[J].石油与天然气地质, 2015, 36(1):1-6. WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1):1-6.
[11] 金之钧, 胡宗全, 高波, 等.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J].地学前缘, 2016, 23(1):1-10. JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formation, south-eastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10.
[12] 梁霄, 徐剑良, 王滢, 等.川南地区渐变型盆-山边界条件下龙马溪组页岩气(藏) 富集主控因素:构造-沉积分异与差异性演化[J].地质科学, 2021, 56(1):60-81. LIANG Xiao, XU Jianliang, WANG Ying, et al. The shale gas enrichment factors of Longmaxi Formation under gradient basin-mountain boundary in South Sichuan Basin:Tectono-depositional differentiation and discrepant evolution[J]. Chinese Journal of Geology, 2021, 56(1):60-81.
[13] 姜磊.强改造作用下川南下古生界页岩气保存条件研究[D].成都:成都理工大学, 2019. JIANG Lei. Study on the preservation conditions of shale gas in Lower Paleozoic in southern Sichuan under strong reformation[D]. Chengdu:Chengdu University of Technology, 2019.
[14] 何登发, 鲁人齐, 黄涵宇, 等.长宁页岩气开发区地震的构造地质背景[J].石油勘探与开发, 2019, 46(5):993-1003. HE Dengfa, LU Renqi, HUANG Hanyu, et al. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(5):993-1003.
[15] 韩倩.川南长宁背斜构造几何学特征及形成演化[D].成都:成都理工大学, 2020. HAN Qian. Geometry and evolution of Changning anticline in southern Sichuan[D]. Chengdu:Chengdu University of Technology, 2020.
[16] 何骁, 吴建发, 雍锐, 等.四川盆地长宁-威远区块海相页岩气田成藏条件及勘探开发关键技术[J].石油学报, 2021, 42 (2):259-270. HE Xiao, WU Jianfa, YONG Rui, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in Changning-Weiyuan block, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(2):259-270.
[17] 马新华.四川盆地南部页岩气富集规律与规模有效开发探索[J].天然气工业, 2018, 38(10):1-10. MA Xinhua. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10):1-10.
[18] 赵圣贤, 杨跃明, 张鉴, 等.四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J].天然气地球科学, 2016, 27(3):470-487. ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al. Microlayers division and fine reservoirs contrast of Lower Silurian Longmaxi-Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3):470-487.
[19] 丰国秀, 陈盛吉.岩石中沥青反射率与镜质体反射率之间的关系[J].天然气工业, 1988, 8(3):20-25. FENG Guoxiu, CHEN Shengji. Relationship between the reflectance of bitumen and vitrinite in rock[J]. Natural Gas Industry, 1988, 8(3):20-25.
[20] 沈瑞, 胡志明, 郭和坤, 等.四川盆地长宁龙马溪组页岩赋存空间及含气规律[J].岩性油气藏, 2018, 30(5):11-17. SHEN Rui, HU Zhiming, GUO Hekun, et al. Storage space and gas content law of Longmaxi shale in Changning area, Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(5):11-17.
[21] 周政.长宁地区五峰组-龙马溪组页岩气富集特征研究[D].成都:成都理工大学, 2020. ZHOU Zheng. Enrichment laws of shale-gas in the Wufeng-Longmaxi Formation, Changning area, southern Sichuan Basin[D]. Chengdu:Chengdu University of Technology, 2020.
[22] 包书景, 翟刚毅, 唐显春, 等.页岩矿物岩石学[M].上海:华东理工大学出版社, 2016:62-66. BAO Shujing, ZHAI Gangyi, TANG Xianchun, et al. Shale mineral petrology[M]. Shanghai:East China University of Science and Technology Press, 2016:62-66.
[23] 郭彤楼.中国式页岩气关键地质问题与成藏富集主控因素[J].石油勘探与开发, 2016, 43(3):317-326. GUO Tonglou. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3):317-326.
[24] 魏力民, 王岩, 张天操, 等.页岩气富集与高产主控因素:以川南地区五峰组-龙马溪组为例[J].断块油气田, 2020, 27(6):700-704. WEI Limin, WANG Yan, ZHANG Tiancao, et al. Main control factors of enrichment and high-production of shale gas:A case study of Wufeng-Longmaxi Formation in southern Sichuan[J]. Fault-Block Oil & Gas Field, 2020, 27(6):700-704.
[1] 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
[2] 罗振锋, 苏中堂, 廖慧鸿, 黄文明, 马慧, 佘伟. 鄂尔多斯盆地中东部米脂地区奥陶系马五5亚段叠层石白云岩特征及其地质意义[J]. 岩性油气藏, 2022, 34(2): 86-94.
[3] 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138.
[4] 李小佳, 邓宾, 刘树根, 吴娟, 周政, 焦堃. 川南宁西地区五峰组—龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6): 135-144.
[5] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(5): 11-21.
[6] 王素英, 张翔, 田景春, 彭明鸿, 郑潇宇, 夏永涛. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5): 81-94.
[7] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[8] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[9] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[10] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[11] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[12] 黄芸, 杨德相, 李玉帮, 胡明毅, 季汉成, 樊杰, 张晓芳, 王元杰. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 70-80.
[13] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[14] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[15] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!