岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 177–188.doi: 10.12108/yxyqc.20210319

• 石油工程 • 上一篇    

页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例

丛平1,2, 闫建平1,2,3, 井翠4, 张家浩4, 唐洪明1,2, 王军5, 耿斌5, 王敏5, 晁静5   

  1. 1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500;
    2. 西南石油大学 地球科学与技术学院, 成都 610500;
    3. 中国地质大学 构造与油气资源教育部重点实验室, 武汉 430074;
    4. 四川长宁天然气开发有限责任公司, 成都 610051;
    5. 中国石化胜利油田分公司 勘探开发研究院, 山东 东营 257015
  • 收稿日期:2020-07-09 修回日期:2020-11-15 发布日期:2021-06-04
  • 通讯作者: 闫建平(1980-),男,博士,教授,主要从事测井地质学、岩石物理及非常规储层测井评价方面的教研工作。Email:yanjp_tj@163.com。 E-mail:yanjp_tj@163.com。
  • 作者简介:丛平(1993—),女,西南石油大学在读硕士研究生,研究方向为测井地质学。地址:(610500)四川省成都市新都区西南石油大学地球科学与技术学院。Email:751802597@qq.com
  • 基金资助:
    中国石油-西南石油大学创新联合体科技合作项目“川南深层与昭通中浅层海相页岩气规模效益开发关键技术研究”(编号:2020CX-020000),“构造与油气资源”教育部重点实验室开放基金项目“湖相页岩油储层微-纳米孔隙结构及有效性测井解释方法”(编号:TPR-2018-08)联合资助

Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin

CONG Ping1,2, YAN Jianping1,2,3, JING Cui4, ZHANG Jiahao4, TANG Hongming1,2, WANG Jun5, GENG Bin5, WANG Min5, CHAO Jing5   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China;
    4. Sichuan Changning Natural Gas Development Company Limited, Chengdu 610051, China;
    5. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying 257015, Shandong, China
  • Received:2020-07-09 Revised:2020-11-15 Published:2021-06-04

摘要: 页岩气储层致密、非均质性强,在开发中须要压裂改造,准确地评价其可压裂性及其展布规律对压裂设计意义重大。以川南X地区五峰组-龙一段1亚段(龙一1)页岩地层为研究对象,以岩心测试,测录井等资料为基础,分析了反映可压裂性的指标,提取脆性指数、泊松比、杨氏模量、抗拉强度和水平主应力差为敏感参数,以层次分析法求出各自权重,构建了综合可压裂系数Icr;结合生产资料划分了Ⅰ,Ⅱ和Ⅲ级可压裂级别;开展多井可压裂级别评价与连井剖面对比,统计Ⅰ,Ⅱ级的地层厚度比,分析平面上可压裂性的变化规律。结果表明:Icr≥0.59时,可压裂级别为Ⅰ级,可压裂性最好;五峰组-龙一11、龙一12中Ⅰ级层段占比较大,是适合压裂开发的有利层段;Ⅰ级层段厚度比为0.8~0.9主要分布在N201,N209,N203,N208和N211井等井区。该研究成果为川南X地区页岩气储层水平井的部井开发提供了依据。

关键词: 页岩气, 可压裂性, 测井评价, 脆性指数, 层次分析法, 川南地区

Abstract: Shale gas reservoir is characterized by tightness and strong heterogeneity,so fracturing is needed to increase production and transformation. Therefore,the evaluation of shale fracturing grade and its distribution rule are of great guiding significance for the fracturing design. The shale formation of Wufeng Formation-Longyi1 submember in X area,southern Sichuan Basin,was taken as the research object,based on the data of core test, logging and mud logging,the indexes reflecting shale fracturing were qualitatively analyzed,and five sensitive parameters brittleness index,Poisson's ratio,Young's modulus,tensile strength and horizontal stress difference were extracted. The weight of each parameter was obtained by analytic hierarchy process to establish the quantitative and comprehensive fracturing coefficient Icr. Combined with the production data of shale gas wells,three fracturing grades Ⅰ,Ⅱ and Ⅲ were divided. Furthermore,the evaluation of fracturing grade of multiple wells and the correlation of well-connected profiles were carried out,and the formation thickness ratios of fracturing grades Ⅰ and Ⅱ were counted to analyze the distribution features of the fracturing performance in the plane. The results show that when Icr ≥0.59,the fracturing grade of shale gas reservoir is grade Ⅰ,and its fracturing performance is the best. The fracturing profile show that the grade I interval in the sublayers 1 and 2 of Wufeng Formation-Longyi1 submember accounts for a large proportion,and core description also shows that the natural fractures in this interval are the most developed and are the most suitable favorable intervals for shale gas fracturing development. The plan indicates that the areas with intervals of grade I fracturing performance with a thickness ratio of 0.8-0.9 are mainly distributed in N201,N209,N203,N208 and N211 well areas. The research results can pro-vide a key basis for effective development of X area shale gas horizontal wells.

Key words: shale gas, fracturing property, logging evaluation, brittleness index, analytic hierarchy process, southern Sichuan Basin

中图分类号: 

  • P631.8
[1] 徐国盛, 徐志星, 段亮, 等. 页岩气研究现状及发展趋势. 成都理工大学学报(自然科学版), 2011, 38(6):603-610. XU G S, XU Z X, DUAN L, et al. Status and development tendency of shale gas research. Journal of Chengdu University of Technology(Science & Technology Edition), 2011, 38(6):603-610.
[2] MULLEN M, ROUNDTREE R, BARREE B. A composite determination of mechanical rock properties for stimulation of mechanical rock properties for stimulation design. SPE 108139, 2007.
[3] RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett Shale. SPE 115258, 2008.
[4] JARVIE D, HILL R J, RUBLE T E, et al. Unconventional shale gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 2007, 91(4):475-499.
[5] ENDERLIN M, ALSLEBEN H, BREVER J A. Predicting fracability in shale reservoirs. AAPG 40783, 2011.
[6] 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法. 地学前缘, 2012, 19(5):356-363. TANG Y, XING Y, LI L Z, et al. Influence factors and evaluation methods of the gas shale fracability. Earth Science Frontiers, 2012, 19(5):356-363.
[7] 王松, 杨洪志, 赵金洲, 等. 页岩气井可压裂性综合评价方法研究及应用. 油气地质与采收率, 2016, 23(2):121-126. WANG S, YANG H Z, ZHAO J Z, et al. Research and application of comprehensive evaluation on fracability of shale gas wells. Petroleum Geology and Recovery Efficiency, 2016, 23(2):121-126.
[8] 王鹏, 纪友亮, 潘仁芳, 等. 页岩脆性的综合评价方法:以四川盆地W区下志留统龙马溪组为例. 天然气工业, 2013, 33(12):48-53. WANG P, JI Y L, PAN R F, et al. A comprehensive evaluation methodology of shale brittleness:A case study from the Lower Silurian Longmaxi Fm in block W, Sichuan Basin. Natural Gas Industry, 2013, 33(12):48-53.
[9] 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展. 天然气工业, 2018, 38(3):1-13. ZHAO J Z, REN L, SHEN C, et al. Lastest research progresses in network fracturing theories and technologies for shale gas reservoirs. Natural Gas Industry, 2018, 38(3):1-13.
[10] 黄金亮,邹才能,李建忠,等. 川南志留系龙马溪组页岩气形成条件与有利区分析. 煤炭学报, 2012, 37(5):782-787. HUANG J L, ZOU C N, LI J Z, et al. Shale gas accumulation condition and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin, China. Journal of China Coal Society, 2012, 37(5):782-787.
[11] 张译戈. 长宁地区页岩气测井精细解释方法研究.成都:西南石油大学, 2014. ZHANG Y G. Shale gas fine logging interpretation method in Changning area. Chengdu:Southwest Petroleum University, 2014.
[12] 刘璐, 范翔宇, 桑琴, 等. 基于测井资料识别页岩气储层的方法优选:以四川盆地长宁区块下志留统龙马溪组为例. 天然气勘探与开发, 2017, 40(1):38-43. LIU L, FAN X Y, SANG Q, et al. Selection of logging-based shale gas reservoir identification methods:A case study on Lower Silurian Longmaxi Fm in Changning block, the Sichuan Basin. Natural Gas Exploration and Development, 2017, 40(1):38-43.
[13] 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比. 天然气地球科学, 2016, 27(3):470-487. ZHAO S X, YANG Y M, ZHANG J, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China. Natural Gas Geoscience, 2016, 27(3):470-487.
[14] 梁豪. 页岩储层岩石脆性破裂机理及评价方法. 成都:西南石油大学, 2014. LIANG H. Brittle fracture mechanism and evaluation method of shale reservoir rock. Chengdu:Southwest Petroleum University, 2014.
[15] CIPOLLA C, LOLON E, ERDLE J, et al. Reservoir modeling in shale gas reservoirs. SPE Reservoir Evaluation and Engineering, 2010, 13(4):638-653.
[16] 孙建孟, 韩志磊, 秦瑞宝, 等. 致密气储层可压裂性测井评价方法. 石油学报, 2015, 36(1):74-80. SUN J M, HAN Z L, QIN R B, et al. Log evaluation method of fracturing performance in tight gas reservoir. Acta Petrolei Sinica, 2015, 36(1):74-80.
[17] 颜磊, 何传亮, 侯克均. 基于成像矿物谱的页岩气储层脆性指数计算方法:以四川盆地南部下志留统龙马溪组为例. 天然气工业, 2019, 39(2):54-60. YAN L, HE C L, HOU K J. A calculation method for brittleness index of shale gas reservoirs based on the imaging spectroscopy mineral maps:A case study of the Lower Silurian Longmaxi shale gas reservoir in the southern Sichuan Basin. Natural Gas Industry, 2019, 39(2):54-60.
[18] 张晋言, 孙建孟. 利用测井资料评价泥页岩油气"五性" 指标. 测井技术, 2012, 36(2):146-153. ZHANG J Y, SUN J M. Log evaluation on shale hydrocarbon reservoir. Well Logging Technology, 2012, 36(2):146-153.
[19] 赖富强, 罗涵, 覃栋优, 等.基于层次分析法的页岩气储层可压裂性评价研究.特种油气藏, 2018, 25(3):154-159. LAI F Q, LUO H, QIN D Y, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process. Special Oil and Gas Reservoir, 2018, 25(3):154-159.
[20] 任岩, 曹宏, 姚逢昌, 等. 岩石脆性评价方法进展. 石油地球物理勘探, 2018, 53(4):875-886. REN Y, CAO H, YAO F C, et al. Development of rock brittleness evaluation method. Oil Geophysical Prospecting, 2018, 53(4):875-886.
[21] 王春权, 王成虎, 江英豪, 等. 基于不同岩石抗拉强度值确定最大水平主应力的对比分析. 地下空间与工程学报, 2017, 13(1):41-47. WANG C Q, WANG C H, JIANG Y H, et al. Comparative analysis of determining the maximum horizontal principal stress based on different tensile strength of rocks. Chinese Journal of Underground Space and Engineering, 2017, 13(1):41-47.
[22] 闫萍, 孙建孟, 苏远大, 等. 利用测井资料计算新疆迪那气田地应力. 新疆石油地质, 2006, 27(5):611-614. YAN P, SUN J M, SU Y D, et al. The earth stress calculation using well logging data in Dina gas field of Xinjiang. Xinjiang Petroleum Geology, 2006, 27(5):611-614.
[23] 余汪根. 页岩水平井起裂及压裂缝网形成机理研究. 成都:西南石油大学, 2016. YU W G. Study on fracture initiation and fracture network formation mechanism of horizontal shale wells. Chengdu:Southwest Petroleum University, 2016.
[24] BLANTON T L. An experimental study of interaction between hydraulically induced and pre-existing fractures. SPE 10847, 1982.
[25] 张少龙, 闫建平, 唐洪明, 等. 致密碎屑岩气藏可压裂性测井评价方法及应用:以松辽盆地王府断陷登娄库组为例. 岩性油气藏, 2018, 30(3):133-142. ZHANG S L, YAN J P, TANG H M, et al. Logging fracturing evaluation for tight clastic gas reservoir and its application:A case from Denglouku Formation in Wangfu fault depression, Songliao Basin. Lithologic Reservoirs, 2018, 30(3):133-142.
[26] 李飒爽. 基于层次分析法的页岩可压性评价方法. 成都:西南石油大学, 2016. LI S S. Shale compressibility evaluation method based on APH. Chengdu:Southwest Petroleum University, 2016.
[27] 司马立强, 温丹妮, 闫建平, 等. 泥页岩储层可压裂性分析及压裂高度预测方法研究. 测井技术, 2015, 39(5):622-639. SIMA L Q, WEN D N, YAN J P, et al. Fracturing hierarchy analysis and fracturing height prediction method in shale reservoirs. Well Logging Technology, 2015, 39(5):622-639.
[28] 邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究. 数学的实践与认识, 2012, 42(7):93-100. DENG X, LI J M, ZENG H J, et al. Research on computation methods of AHP wight vector and its applications. Mathematics in Practice and Theory, 2012, 42(7):93-100.
[29] 王曦蒙,刘洛夫,汪洋,等. 川南地区龙马溪组页岩岩相对页岩孔隙空间的控制. 石油学报, 2019, 40(10):1192-1201. WANG X M, LIU L F, WANG Y, et al. Control of lithofacies on pore space of shale from Longmaxi Formation, southern Sichuan Basin. Acta Petrolei Sinica, 2019, 40(10):1192-1201.
[30] 史洪亮, 熊亮, 董晓霞, 等. 川南地区五峰组-龙马溪组下段页岩岩相特征及演化序列差异性成因. 天然气工业, 2019, 39(1):71-77. SHI H L, XIONG L, DONG X X, et al. The characteristics of shale facies and the differential genesis of evolution sequence in the Lower Longmaxi Formation of Wufeng Formation in southern Sichuan. Natural Gas Industry, 2019, 39(1):71-77.
[31] 武恒志, 熊亮, 葛忠伟, 等. 四川盆地威远地区页岩气优质储层精细刻画与靶窗优选. 天然气工业, 2019, 39(3):11-20. WU H Z, XIONG L, GE Z W, et al. Fine characterization and target window optimization of high quality shale gas reservoirs in the Weiyuan area, Sichuan Basin. Natural Gas Industry, 2019, 39(3):11-20.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[4] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[5] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[6] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[7] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[8] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[9] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
[10] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
[11] 姜瑞忠, 张福蕾, 崔永正, 潘红, 张旭, 张春光, 沈泽阳. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156.
[12] 曹茜, 戚明辉, 张昊天, 黄毅, 张烨毓. 一种基于应力-应变特征的岩石脆性指数评价改进方法[J]. 岩性油气藏, 2019, 31(4): 54-61.
[13] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[14] 薛丹, 张遂安, 吴新民, 李旭航, 杜军军, 卢晨刚. 下寺湾油田长7油层组页岩气储层敏感性实验[J]. 岩性油气藏, 2019, 31(3): 135-144.
[15] 王朋飞, 姜振学, 杨彩虹, 金璨, 吕鹏, 王海华. 重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征[J]. 岩性油气藏, 2019, 31(3): 27-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[4] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[5] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[6] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[7] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[8] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[9] 罗志立,张景廉,石兰亭. “塔里木—扬子古大陆”重建对无机成因油气的作用[J]. 岩性油气藏, 2008, 20(1): 124 -128 .
[10] 张霞. 勘探人整体素质的培养——学会科学思维[J]. 岩性油气藏, 2008, 20(1): 129 -133 .