岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 145–152.doi: 10.12108/yxyqc.20210315

• 油气田开发 • 上一篇    下一篇

考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征

许飞   

  1. 中国石油长庆油田分公司 工程技术管理部, 西安 710016
  • 收稿日期:2020-07-27 修回日期:2020-09-21 发布日期:2021-06-03
  • 第一作者:许飞(1986—),男,硕士,工程师,主要从事油气田开发工程方面的研究与管理工作。地址:(710016)陕西省西安市未央区凤城四路长庆大厦。Email:xufcqyt1121@163.com。
  • 基金资助:
    国家科技重大专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050)资助

Spontaneous imbibition characteristics of fracturing fluid in shale gas reservoir considering chemical osmotic pressure

XU Fei   

  1. Department of Engineering Technology Management, PetroChina Changqing Oilfield Company, Xi'an 7100161, China
  • Received:2020-07-27 Revised:2020-09-21 Published:2021-06-03

摘要: 裂缝-基质之间矿化度差异引起的化学渗透压对页岩压裂液返排和气井产能计算有着重要的影响。通过建立考虑化学渗透压作用下的渗吸动力模型,描述页岩自发渗吸过程中的驱动力类型。以鄂尔多斯盆地本溪组页岩为研究对象,开展页岩自发渗吸核磁扫描实验,研究黏土矿物、矿化度和表面活性剂对含水饱和度分布的影响。并以实验测定的含水饱和度分布曲线为拟合目标,获得了兼具毛管压力和化学渗透压双重作用下的毛管压力曲线。结果表明,页岩在自发渗吸过程中,随着渗吸时间的增加,吸水量呈现先快速增加后逐渐变缓的趋势,而渗吸速率则快速下降。页岩中黏土矿物含量越高、裂缝-基质间化学势差越大,渗吸驱动力越强,渗吸前缘距离和吸水量越大,而表面活性剂会降低毛管压力,引起驱动力下降,导致渗吸效果大幅降低。将修正后的毛管压力曲线应用于页岩气井产量预测,大幅提高了模型的计算精度。该研究成果为鄂尔多斯盆地页岩气藏高效开发提供了方法和依据。

关键词: 页岩气, 化学渗透压, 自发渗吸, 返排, 矿化度, 鄂尔多斯盆地

Abstract: The chemical osmotic pressure caused by salinity difference between fracture and matrix has an important influence on shale fracturing fluid flowback and gas well productivity calculation. The driving force types of shale spontaneous imbibition were described by establishing an imbibition dynamic model considering chemical osmotic pressure. Taking Benxi Formation shale in Ordos Basin as the research object,the effects of clay minerals,salinity and surfactant on water saturation distribution curve were studied through the shale spontaneous imbibition NMR scanning experiment. The capillary pressure curve under the dual action of capillary pressure and chemical osmotic pressure was obtained with the water saturation distribution curve measured by experiment as the fitting target. The results show that with the increase of imbibition time,the water absorption of shale increases rapidly first and then gradually slows down,while the imbibition rate decreases rapidly. The higher the clay mineral contenf decreases rapidly. The higher the clay mint in shale and the greater the chemical potential difference between matrix and fracture,the stronger the imbibition driving force is,and the greater the imbibition front distance and water absorption capacity are. The surfactant can reduce the capillary pressure and cause the driving force to drop,leading to the significant weakening of imbibition effect. The modified capillary pressure curve was applied to production prediction of shale gas well,which greatly improves the calculation accuracy of the model. The results provide a method and basis for efficient development of shale gas reservoir in Ordos Basin.

Key words: shale gas, chemical osmotic pressure, spontaneous imbibition, flowback, salinity, Ordos Basin

中图分类号: 

  • TE357
[1] 罗群, 吴安彬, 王井伶, 等.中国北方页岩气成因类型、成气模式与勘探方向.岩性油气藏, 2019, 31(1):1-11. LUO Q, WU A B, WANG J L, et al. Genetic types,generation models,and exploration direction of shale gas in northern China. Lithologic Reservoirs, 2019, 31(1):1-11.
[2] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二).石油勘探与开发, 2016, 43(2):166-178. ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China:Characteristics,challenges and prospects(Ⅱ). Petroleum Exploration and Development, 2016, 43(2):166-178.
[3] 杜洋, 雷炜, 李莉, 等. 页岩气井压裂后焖排模式. 岩性油气藏, 2019, 31(3):145-151. DU Y, LEI W, LI L, et al. Shut-in and flow-back pattern of fractured shale gas wells. Lithologic Reservoirs, 2019, 31(3):145-151.
[4] 任岚, 邸云婷, 赵金洲, 等.页岩气藏压裂液返排理论与技术研究进展.大庆石油地质与开发, 2019, 38(2):144-152. REN L, DI Y T, ZHAO J Z, et al. Advances in the theory and technique of the fracturing fluid flowback in shale gas reservoirs. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(2):144-152.
[5] LIN H, ZHANG S C, WANG F, et al. Experimental investigation on imbibition-front progression in shale based on nuclear magnetic resonance. Energy & Fuels, 2016, 30(11):9097-9105.
[6] LUTZ B D, LEWIS A N, DOYLE M W. Generation,transport, and disposal of water associated with Marcellus shale gas development. Water Resources Research, 2013, 49(2):647-656.
[7] 陈守雨, 修书志, 宋博, 等.页岩气井压后返排动态模拟研究. 中外能源, 2016, 21(7):43-50. CHEN S Y, XIU S Z, SONG B, et al. Research on dynamic simulation of fracturing fluid flowback in shale gas wells. Sino-Global Energy, 2016, 21(7):43-50.
[8] DEHGHANPOUR H, ZUBAIR H A, CHHABRAA, et al. Liquid intake of organic shales. Energy & Fuels, 2012, 26(9):5750-5758.
[9] KURTOGLU B. Integrated reservoir characterization and modeling in support of enhanced oil recovery for Bakken. Dissertations & Theses-Gradworks, 2013, 8:1505-1508.
[10] FAKCHAROENPHOL P, KAZEMI H, CHAROENWONGSA S, et al. The effect of osmotic pressure on improve oil recovery from fractured shale formations. SPE Unconventional resource conference, 2014.
[11] ZHANG J, CHENEVERT M E, AL-BAZALI T, et al. A new gravimetric-swelling test for evaluating water and ion uptake in shales. SPE 89831, 2004.
[12] GE H, YANG L, SHEN Y, et al. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids. Petroleum Science, 2015, 12(4):636-650.
[13] 杨柳, 冷润熙, 常天全, 等.页岩气储层渗吸与盐离子扩散相关关系.中国海上油气, 2020, 32(2):112-119. YANG L, LENG R X, CHANG T Q, et al. Correlation between the imbibition and salt ion diffusion of shale gas reservoirs. China Offshore Oil and Gas, 2020, 32(2):112-119.
[14] 林魂. 页岩气储层压后返排评估研究. 北京:中国石油大学(北京), 2017. LIN H. Research on post-frac flowback of shale gas reservoir. Beijing:China University of Petroleum(Beijing), 2017.
[15] 刘秀婵, 陈西泮, 刘伟, 等.致密砂岩油藏东阳台渗吸驱油效果影响因素及应用.岩性油气藏, 2019, 31(5):114-120. LIU X C, CHEN X P, LIU W, et al. Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application. Lithologic Reservoirs, 2019, 31(5):114-120.
[16] 黄睿哲, 姜振学, 高之业, 等.页岩储层组构特征对自发渗吸的影响. 油气地质与采收率, 2017, 24(01):111-115. HUANG R Z, JIANG Z X, GAO Z Y, et al. Effect of composition and structural characteristics on spontaneous imbibition of shale reservoir. Petroleum Geology and Recovery Efficiency, 2017, 24(1):111-115.
[17] 王飞, 潘子晴.化学势差驱动下的页岩储集层压裂液返排数值模拟.石油勘探与开发, 2016, 43(6):971-977. WANG F, PAN Z Q, Numerical simulation of chemical potential dominated fracturing fluid flowback in hydraulically fractured shale gas reservoirs. Petroleum Exploration and Development, 2016, 43(6):971-977.
[18] ENGELDER T, CATHLES L M, BRYNDZIA L T. The fate of residual treatment water in gas shale. Journal of Unconventional Oil & Gas Resources, 2014, 7(3):33-48.
[19] 雷征东, 覃斌, 刘双双, 等. 页岩气藏水力压裂渗吸机理数值模拟研究. 西南石油大学学报(自然科学版), 2017, 39(2):118-124. LEI Z D, QIN B, LIU S S, et al. Imbibition mechanism of hydraulic fracturing in shale gas reservoir. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(2):118-124.
[20] 张涛, 李相方, 王永辉, 等.页岩储层特殊性质对压裂液返排率和产能的影响.天然气地球科学, 2017, 28(6):828-838. ZHANG T, LI X F, WANG Y H, et al. Study on the effect of gas shale reservoir special properties on the fracturing fluid recovery efficiency and production performance. Natural Gas Geoscience, 2017, 28(6):828-838.
[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[3] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[4] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[5] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[6] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[7] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[8] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[9] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[10] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[11] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[12] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[13] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[14] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[15] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1): 32-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .