岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 145–152.doi: 10.12108/yxyqc.20210315

• 油气田开发 • 上一篇    下一篇

考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征

许飞   

  1. 中国石油长庆油田分公司 工程技术管理部, 西安 710016
  • 收稿日期:2020-07-27 修回日期:2020-09-21 发布日期:2021-06-03
  • 作者简介:许飞(1986—),男,硕士,工程师,主要从事油气田开发工程方面的研究与管理工作。地址:(710016)陕西省西安市未央区凤城四路长庆大厦。Email:xufcqyt1121@163.com。
  • 基金资助:
    国家科技重大专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050)资助

Spontaneous imbibition characteristics of fracturing fluid in shale gas reservoir considering chemical osmotic pressure

XU Fei   

  1. Department of Engineering Technology Management, PetroChina Changqing Oilfield Company, Xi'an 7100161, China
  • Received:2020-07-27 Revised:2020-09-21 Published:2021-06-03

摘要: 裂缝-基质之间矿化度差异引起的化学渗透压对页岩压裂液返排和气井产能计算有着重要的影响。通过建立考虑化学渗透压作用下的渗吸动力模型,描述页岩自发渗吸过程中的驱动力类型。以鄂尔多斯盆地本溪组页岩为研究对象,开展页岩自发渗吸核磁扫描实验,研究黏土矿物、矿化度和表面活性剂对含水饱和度分布的影响。并以实验测定的含水饱和度分布曲线为拟合目标,获得了兼具毛管压力和化学渗透压双重作用下的毛管压力曲线。结果表明,页岩在自发渗吸过程中,随着渗吸时间的增加,吸水量呈现先快速增加后逐渐变缓的趋势,而渗吸速率则快速下降。页岩中黏土矿物含量越高、裂缝-基质间化学势差越大,渗吸驱动力越强,渗吸前缘距离和吸水量越大,而表面活性剂会降低毛管压力,引起驱动力下降,导致渗吸效果大幅降低。将修正后的毛管压力曲线应用于页岩气井产量预测,大幅提高了模型的计算精度。该研究成果为鄂尔多斯盆地页岩气藏高效开发提供了方法和依据。

关键词: 页岩气, 化学渗透压, 自发渗吸, 返排, 矿化度, 鄂尔多斯盆地

Abstract: The chemical osmotic pressure caused by salinity difference between fracture and matrix has an important influence on shale fracturing fluid flowback and gas well productivity calculation. The driving force types of shale spontaneous imbibition were described by establishing an imbibition dynamic model considering chemical osmotic pressure. Taking Benxi Formation shale in Ordos Basin as the research object,the effects of clay minerals,salinity and surfactant on water saturation distribution curve were studied through the shale spontaneous imbibition NMR scanning experiment. The capillary pressure curve under the dual action of capillary pressure and chemical osmotic pressure was obtained with the water saturation distribution curve measured by experiment as the fitting target. The results show that with the increase of imbibition time,the water absorption of shale increases rapidly first and then gradually slows down,while the imbibition rate decreases rapidly. The higher the clay mineral contenf decreases rapidly. The higher the clay mint in shale and the greater the chemical potential difference between matrix and fracture,the stronger the imbibition driving force is,and the greater the imbibition front distance and water absorption capacity are. The surfactant can reduce the capillary pressure and cause the driving force to drop,leading to the significant weakening of imbibition effect. The modified capillary pressure curve was applied to production prediction of shale gas well,which greatly improves the calculation accuracy of the model. The results provide a method and basis for efficient development of shale gas reservoir in Ordos Basin.

Key words: shale gas, chemical osmotic pressure, spontaneous imbibition, flowback, salinity, Ordos Basin

中图分类号: 

  • TE357
[1] 罗群, 吴安彬, 王井伶, 等.中国北方页岩气成因类型、成气模式与勘探方向.岩性油气藏, 2019, 31(1):1-11. LUO Q, WU A B, WANG J L, et al. Genetic types,generation models,and exploration direction of shale gas in northern China. Lithologic Reservoirs, 2019, 31(1):1-11.
[2] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二).石油勘探与开发, 2016, 43(2):166-178. ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China:Characteristics,challenges and prospects(Ⅱ). Petroleum Exploration and Development, 2016, 43(2):166-178.
[3] 杜洋, 雷炜, 李莉, 等. 页岩气井压裂后焖排模式. 岩性油气藏, 2019, 31(3):145-151. DU Y, LEI W, LI L, et al. Shut-in and flow-back pattern of fractured shale gas wells. Lithologic Reservoirs, 2019, 31(3):145-151.
[4] 任岚, 邸云婷, 赵金洲, 等.页岩气藏压裂液返排理论与技术研究进展.大庆石油地质与开发, 2019, 38(2):144-152. REN L, DI Y T, ZHAO J Z, et al. Advances in the theory and technique of the fracturing fluid flowback in shale gas reservoirs. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(2):144-152.
[5] LIN H, ZHANG S C, WANG F, et al. Experimental investigation on imbibition-front progression in shale based on nuclear magnetic resonance. Energy & Fuels, 2016, 30(11):9097-9105.
[6] LUTZ B D, LEWIS A N, DOYLE M W. Generation,transport, and disposal of water associated with Marcellus shale gas development. Water Resources Research, 2013, 49(2):647-656.
[7] 陈守雨, 修书志, 宋博, 等.页岩气井压后返排动态模拟研究. 中外能源, 2016, 21(7):43-50. CHEN S Y, XIU S Z, SONG B, et al. Research on dynamic simulation of fracturing fluid flowback in shale gas wells. Sino-Global Energy, 2016, 21(7):43-50.
[8] DEHGHANPOUR H, ZUBAIR H A, CHHABRAA, et al. Liquid intake of organic shales. Energy & Fuels, 2012, 26(9):5750-5758.
[9] KURTOGLU B. Integrated reservoir characterization and modeling in support of enhanced oil recovery for Bakken. Dissertations & Theses-Gradworks, 2013, 8:1505-1508.
[10] FAKCHAROENPHOL P, KAZEMI H, CHAROENWONGSA S, et al. The effect of osmotic pressure on improve oil recovery from fractured shale formations. SPE Unconventional resource conference, 2014.
[11] ZHANG J, CHENEVERT M E, AL-BAZALI T, et al. A new gravimetric-swelling test for evaluating water and ion uptake in shales. SPE 89831, 2004.
[12] GE H, YANG L, SHEN Y, et al. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids. Petroleum Science, 2015, 12(4):636-650.
[13] 杨柳, 冷润熙, 常天全, 等.页岩气储层渗吸与盐离子扩散相关关系.中国海上油气, 2020, 32(2):112-119. YANG L, LENG R X, CHANG T Q, et al. Correlation between the imbibition and salt ion diffusion of shale gas reservoirs. China Offshore Oil and Gas, 2020, 32(2):112-119.
[14] 林魂. 页岩气储层压后返排评估研究. 北京:中国石油大学(北京), 2017. LIN H. Research on post-frac flowback of shale gas reservoir. Beijing:China University of Petroleum(Beijing), 2017.
[15] 刘秀婵, 陈西泮, 刘伟, 等.致密砂岩油藏东阳台渗吸驱油效果影响因素及应用.岩性油气藏, 2019, 31(5):114-120. LIU X C, CHEN X P, LIU W, et al. Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application. Lithologic Reservoirs, 2019, 31(5):114-120.
[16] 黄睿哲, 姜振学, 高之业, 等.页岩储层组构特征对自发渗吸的影响. 油气地质与采收率, 2017, 24(01):111-115. HUANG R Z, JIANG Z X, GAO Z Y, et al. Effect of composition and structural characteristics on spontaneous imbibition of shale reservoir. Petroleum Geology and Recovery Efficiency, 2017, 24(1):111-115.
[17] 王飞, 潘子晴.化学势差驱动下的页岩储集层压裂液返排数值模拟.石油勘探与开发, 2016, 43(6):971-977. WANG F, PAN Z Q, Numerical simulation of chemical potential dominated fracturing fluid flowback in hydraulically fractured shale gas reservoirs. Petroleum Exploration and Development, 2016, 43(6):971-977.
[18] ENGELDER T, CATHLES L M, BRYNDZIA L T. The fate of residual treatment water in gas shale. Journal of Unconventional Oil & Gas Resources, 2014, 7(3):33-48.
[19] 雷征东, 覃斌, 刘双双, 等. 页岩气藏水力压裂渗吸机理数值模拟研究. 西南石油大学学报(自然科学版), 2017, 39(2):118-124. LEI Z D, QIN B, LIU S S, et al. Imbibition mechanism of hydraulic fracturing in shale gas reservoir. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(2):118-124.
[20] 张涛, 李相方, 王永辉, 等.页岩储层特殊性质对压裂液返排率和产能的影响.天然气地球科学, 2017, 28(6):828-838. ZHANG T, LI X F, WANG Y H, et al. Study on the effect of gas shale reservoir special properties on the fracturing fluid recovery efficiency and production performance. Natural Gas Geoscience, 2017, 28(6):828-838.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[3] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[4] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[5] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[6] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[7] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[8] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[9] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[10] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[11] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[12] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
[13] 何维领, 罗顺社, 李昱东, 吴悠, 吕奇奇, 席明利. 斜坡背景下沉积物变形构造时空展布规律——以鄂尔多斯盆地镇原地区长7油层组为例[J]. 岩性油气藏, 2020, 32(6): 62-72.
[14] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[15] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[5] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[6] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[7] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[8] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[9] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[10] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .