岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 138–144.doi: 10.12108/yxyqc.20210314

• 油气田开发 • 上一篇    下一篇

气液两相嘴流新模型及应用

李南星1,2, 张鹏1,3, 郑锐2, 马龙1,2, 杨成亮1,2   

  1. 1. 中国石油吐哈油田分公司 气举技术中心, 新疆 鄯善 838202;
    2. 中国石油吐哈油田分公司工程技术研究院, 新疆 鄯善 838202;
    3. 中国石油大学 (华东)石油工程学院, 山东 青岛 226580
  • 收稿日期:2020-05-18 修回日期:2020-07-30 发布日期:2021-06-03
  • 通讯作者: 张鹏(1981-),男,硕士,高级工程师,主要从事气举、压裂、注水/气技术及井筒安全性等方面的研究工作。Email:zhangpeng2018@qq.com。 E-mail:zhangpeng2018@qq.com。
  • 作者简介:李南星(1985—),男,硕士,工程师,主要从事油气田开发工程及气举采油工艺等方面的研究工作。地址:(838202)新疆吐鲁番鄯善县火车站镇吐哈石油基地工程技术研究院。Email:linxsc@petrochina.com.cn
  • 基金资助:
    国家油气重大专项“中亚和中东地区复杂碳酸盐岩油气藏采油采气关键技术研究与应用”(编号:2017ZX05030)和中国石油集团公司“十二五”重大专项“中国石油海外油气当量上产2亿吨开发关键技术研究”(编号:2011E-2502)联合资助

New model of gas-liquid two-phase choke flow and its application

LI Nanxing1,2, ZHANG Peng1,3, ZHENG Rui2, MA Long1,2, YANG Chengliang1,2   

  1. 1. Gas-lift Technology Innovation Center, PetroChina Tuha Oilfield Company, Shanshan 838202, Xinjiang, China;
    2. Research Institute of Engineering and Technology, PetroChina Tuha Oilfield Company, Shanshan 838202, Xinjiang, China;
    3. College of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China
  • Received:2020-05-18 Revised:2020-07-30 Published:2021-06-03

摘要: 为了获取较大的利润,合理选择油嘴尺寸和延长油井自喷期十分重要,而北阿油田现有的油井嘴流模型难以满足现场采油的需要。运用瑞利法的量纲分析原理、最小二乘法和基于现场资料的多元线性回归方法,将API重度、黏度和含水率等3个参数加入临界嘴流公式,建立了适用于北阿油田的嘴流新模型。结果表明:新模型预测的质量流速平均相对误差为1.1%,平均绝对误差为6.5%,相关系数为0.876,综合评定系数为0.933;预测产量的平均相对误差为2.9%,平均绝对误差为8.4%,相关系数为0.829,综合评定系数为0.900,与其他评价模型相比,新模型的准确率更高。现场应用表明:运用新模型计算不同生产阶段的产量与现场生产数据具有较好的一致性,不但产量的变化趋势比较吻合,而且对应数据的平均相对误差和平均绝对误差都在10%以内,相比其他模型更符合油田的生产特征,能满足油井产量计算与预测的需求。新模型的建立为该油田合理选择油嘴尺寸、完成日产指标及延长油井自喷期提供了理论依据,同时对其他类似油田也具有借鉴和指导意义。

关键词: 自喷井, 两相嘴流, 模型评价, 临界状态, 北阿油田

Abstract: In order to obtain larger profits,it is important to choose reasonable choke size and extend the flowing period. However,the existing choke flow model is difficult to meet the demands of North Azadegan Oilfield. By using the dimensional analysis principle of Rayleigh method,least square method and multiple linear regression method based on field data,a new choke flow model suitable for North Azadegan Oilfield was established by adding the three parameters of API gravity,crude oil viscosity and water cut to the critical choke flow formula. The results show that the average relative error of the mass flow rate predicted by the new model is 1.1%, the average absolute error is 6.5%,the correlation coefficient is 0.876,and the comprehensive evaluation coefficient is 0.933. The average relative error of the predicted production rate is 2.9%,the average absolute error is 8.4%,the correlation coefficient is 0.829,and the comprehensive evaluation coefficient is 0.900. Compared with other evaluation models,the new model has higher accuracy. Field application shows that the production rate in different stages calculated by the new model has excellent consistency with the on-site production data. Not only the change trend of the production rate is more consistent,but also the average relative error and absolute error of the corresponding data are within 10%. Compared with other models,the new model is more consistent with the production characteristics of the oilfield and can meet the demands of oil well production rate calculation and prediction. The establishment of the new model provides a theoretical basis for the reasonable selection of choke size, the completion of daily production rate and the extension of the flowing period in this oilfield. Furthermore,it has reference and guiding significance for other similar oilfields.

Key words: flowing well, two-phase choke flow, model evaluation, critical state, North Azadegan Oilfield

中图分类号: 

  • TE355.2+1
[1] ASHFORD F E, PIERCE P E. Determining multiphase pressure drops and flow capacities in down-hole safety valves. Journal of Petroleum Technology, 1975, 27(9):1145-1152.
[2] ROS N C J. An analysis of critical simultaneous gas/liquid flow through a restriction and its application to flow-metering. Applied Science Research, 1960, 9(1):374-388.
[3] ACHONG I. Revised bean performance formula for lake maracaibo wells. Shell Oil, 1961.
[4] GILBERT W E. Flowing and gas-lift well performance. API Drilling and Production Practice, 1949, 20:143-150.
[5] SACHDEVA R, SCHMIDT Z, BRILL J P, et al. Two-phase flow through chokes. SPE 15657, 1986.
[6] PERKINS T K. Critical and subcritical flow of multiphase mixtures through chokes. SPE 20633, 1993.
[7] ELIBALY A A M. Prediction of two-phase flow through chokes for Middle-East oil wells. SPE 36274, 1996.
[8] SCHÜLLER R B, MUNAWEERA S, SELMER-OLSEN S. Critical and subcritical oil/gas/water mass flow rate experiments and predictions for chokes. SPE 88813, 2006.
[9] OSMAN M E, DOKLA M E. Gas condensate flow through chokes. SPE 20988, 1990.
[10] 张琪. 采油工程原理与设计. 东营:石油大学出版社, 2001:48-59. ZHANG Q. Principle and design of oil production engineering. Dongying:Press of University of Petroleum, China, 2001:48-59.
[11] 姜瑞忠, 张春光, 郜益华, 等.缝洞型碳酸盐岩油藏水平井分形非线性渗流.岩性油气藏, 2019, 31(6):118-126. JIANG R Z, ZHANG C G, GAO Y H, et al. Fractal nonlinear seepage model of horizontal wells in fractured-vuggy carbonate reservoirs. Lithologic Reservoirs, 2019, 31(6):118-126.
[12] 陈欢, 李紫晗, 曹砚锋, 等.临兴致密气井井筒积液动态模拟分析.岩性油气藏, 2018, 30(2):154-160. CHEN H, LI Z H, CAO Y F, et al. Dynamic simulation analysis of wellbore liquid loading in gas well for Linxing gas field. Lithologic Reservoirs, 2018, 30(2):154-160.
[13] 薛建强, 张文洪, 刘艳东, 等.考虑滑脱的气液两相嘴流新模型.石油钻采工艺, 2017, 39(4):464-471. XUE J Q, ZHANG W H, LIU Y D, et al. A new model for predicting gas-liquid two-phase choke flow considering the slip. Oil Drilling & Production technology, 2017, 39(4):464-471.
[14] 宋宣毅, 刘月田, 马晶, 等.基于灰狼算法优化的支持向量机产能预测.岩性油气藏, 2020, 32(2):134-140. SONG X Y, LIU Y T, MA J, et al. Productivity forecast based on support vector machine optimized by grey wolf optimizer. Lithologic Reservoirs, 2020, 32(2):134-140.
[15] 王志彬, 李颖川, 王宇, 等.气井气水两相节流实验研究及模型评价.钻采工艺, 2008, 31(5):78-80. WANG Z B, LI Y C, WANG Y, et al. Two-phase choke flow experiment and models evaluation of gas well with water. Drilling & Production technology, 2008, 31(5):78-80.
[16] 李传亮, 朱苏阳, 柴改建, 等.直井与水平井的产能对比.岩性油气藏, 2018, 30(3):12-16. LI C L, ZHU S Y, CHAI G J, et al. Comparison of productivity of vertical wells with horizontal wells. Lithologic Reservoirs, 2018, 30(3):12-16.
[17] 石善志, 刘杨, 于会永, 等.气液两相嘴流回归模型在自喷井采油设计中的应用:以北特鲁瓦油田为例.新疆石油地质, 2012, 33(6):754-755. SHI S Z, LIU Y, YU H Y, et al. Application of gas-liquid two phase choke flow regression model to flowing wells production design in North Troyes oilfield. Xinjiang Petroleum Geology, 2012, 33(6):754-755.
[18] 李璐, 解慧, 彭振华, 等.塔河稠油掺稀自喷井嘴流规律探讨. 化学工程与装备, 2015(5):84-87. LI L, XIE H, PENG Z H, et al. The discussion of regularity for the choke flow of diluting gusher in Tahe Oilfield. Chemical Engineering & Equipment, 2015(5):84-87.
[19] 陈志海, 刘常红, 李明.塔河油田缝洞型油藏油井产量的嘴流公式研究.石油钻探技术, 2007, 35(4):73-75. CHEN Z H, LIU C H, LI M. Choke production rate formulas for fracture-cave reservoirs in Tahe Oilfield. Petroleum Drilling Techniques, 2007, 35(4):73-75.
[20] 姜瑞忠, 沈泽阳, 崔永正, 等.双重介质低渗油藏斜井压力动态特征分析.岩性油气藏, 2018, 30(6):131-137. JIANG R Z, SHEN Z Y, CUI Y Z, et al. Dynamical characteristics of inclined well in dual medium low permeability reservoir. Lithologic Reservoirs, 2018, 30(6):131-137.
[21] 魏环, 许贺菊.量纲理论与量纲分析法的教学方案的探讨.物理与工程, 2019, 29(3):19-25. WEI H, XU H J. Discussion on the teaching scheme of dimensional theory and dimensional analysis method. Physics and Engineering, 2019, 29(3):19-25.
[22] 郑伟, 谭先红, 王泰超, 等.海上稠油油田蒸汽吞吐产量确定新方法.新疆石油地质, 2020, 41(3):344-348. ZHENG W, TAN X H, WANG T C, et al. A new method to determine initial production of steam stimulation in offshore heavy oilfield. Xinjiang Petroleum Geology, 2020, 41(3):344-348.
[23] 谢芳, 张承森, 刘瑞林, 等.碳酸盐岩缝洞储集层电成像测井产量预测.石油勘探与开发, 2018, 45(2):349-356. XIE F, ZHANG C S, LIU R L, et al. Production prediction for fracture-vug carbonate reservoirs using electric imaging logging data. Petroleum Exploration and Development, 2018, 45(2):349-356.
[24] 罗二辉, 胡永乐, 王磊, 等.缝洞型低渗透碳酸盐岩油藏产量递减曲线分析.大庆石油学院学报, 2012, 36(2):86-90. LUO E H, HU Y L, WANG L, et al. Analysis of production decline curves in naturally vuggy and fractured carbonate reservoir with low permeability media. Journal of Daqing Petroleum Institute, 2012, 36(2):86-90.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[5] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[6] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[7] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[8] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[9] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[10] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .