岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 153161.doi: 10.12108/yxyqc.20210316
郭永伟1,2, 闫方平1, 王晶1, 褚会丽1, 杨建雷1, 陈颖超1, 张笑洋1
GUO Yongwei1,2, YAN Fangping1, WANG Jing1, CHU Huili1, YANG Jianlei1, CHEN Yingchao1, ZHANG Xiaoyang1
摘要: 沥青质及金属无机沉淀对致密储层的伤害是注CO2驱替中不可避免的问题。为探究沥青质及无机沉淀对储层的伤害机理,以鄂尔多斯盆地延长组长7储层为例,在明确(非)混相压力下原油中CO2含量与沥青质沉淀量关系的基础上,通过开展CO2驱替长岩心实验,研究了CO2非混相和混相驱过程中沥青质和无机沉淀对储层的伤害特征,评价了有机和无机沉淀对储层渗透率和孔隙度的伤害程度。结果表明:当原油中CO2含量达到临界值时,沥青质开始沉淀,沉淀量随CO2含量的增加先快速上升后趋于稳定。混相压力下沥青质沉淀对渗透率和孔隙度的伤害程度均大于非混相。沥青质在混相压力下大量沉积部位为长岩心中后部,而在非混相压力下主要在长岩心前中部。当岩心中沥青质沉淀量达到最大时,后续岩心中的沥青质沉淀量将会逐渐降低,对渗透率造成的伤害也会逐渐减小。无机沉淀在非混相压力下对前中部岩心的渗透率伤害程度大,而在混相压力下则对中后部岩心的渗透率伤害程度大;无机沉淀对孔隙度的影响规律与对渗透率存在差异,主要与溶蚀作用及无机沉淀产生的位置有密切关系。若目标油藏采用非混相驱开发,预防重点为无机沉淀,预防沉淀部位为注入端附近储层;若采用混相驱开发,则预防重点为有机沉淀,预防沉淀部位为产出端附近储层。
中图分类号:
[1] 邹才能, 朱如凯, 吴松, 等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例.石油学报, 2012, 33(3):173-187. ZOU C N, ZHU R K, WU S, et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulation:Taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 2012, 33(3):173-187. [2] 孙会珠, 朱玉双, 魏勇, 等.CO2 驱酸化溶蚀作用对原油采收率的影响机理.岩性油气藏, 2020, 32(4):136-142. SUN H Z, ZHU Y S, WEI Y, et al. Influence mechanism of acidification on oil recovery during CO2 flooding. Lithologic Reservoirs, 2020, 32(4):136-142. [3] 韩海水, 李实, 陈兴隆, 等.CO2 对原油烃组分膨胀效应的主控因素.石油学报, 2016, 37(3):392-398. HAN H S, LI S, CHEN X L, et al. Main control factors of carbon dioxide on swelling effect of crude hydrocarbon components. Acta Petrolei Sinica, 2016, 37(3):392-398. [4] 沈平平, 黄磊.二氧化碳-原油多相多组分渗流机理研究.石油学报, 2009, 30(2):247-251. SHEN P P, HUANG L. Flow mechanisms of multi-phase multicomponent CO2-crude oil system in porous media. Acta Petrolei Sinica, 2009, 30(2):247-251. [5] 胡伟, 吕成远, 王锐, 等.水驱转CO2 混相驱渗流机理及传质特征.石油学报, 2018, 39(2):201-209. HU W, LYU C Y, WANG R, et al. Porous flow mechanism and mass transfer characteristics of CO2 miscible flooding after waterflooding. Acta Petrolei Sinica, 2018, 39(2):201-209. [6] 杨胜来, 杭达震, 孙蓉, 等.CO2 对原油的抽提及其对原油黏度的影响.中国石油大学学报:自然科学版, 2009, 33(4):85-88. YANG S L, HANG D Z, SUN R, et al. CO2 extraction for crude oil and its effect on crude oil viscosity. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(4):85-88. [7] 王琛, 李天太, 赵金省, 等.利用核磁共振技术研究沥青质沉积对低渗储层孔隙结构的影响. 地球物理学进展, 2018, 33(4):1700-1706. WANG C, LI T T, ZHAO J S, et al. Study on effect of asphaltene precipitation on the pore structure of low permeability reservoir by nuclear magnetic resonance(NMR). Progress in Geophysics (in Chinese), 2018, 33(4):1700-1706. [8] WANG X Q, GU Y A. Oil recovery and permeability reduction of a tight sandstone reservoir in immiscible and miscible CO2 flooding process. Industrial & Engineering Chemistry Research, 2011, 50(4):2388-2399. [9] 熊山, 王学生, 张遂, 等.WXS油藏长期水驱储层物性参数变化规律.岩性油气藏, 2019, 31(3):120-129. XIONG S, WANG X S, ZHANG S, et al. Physical properties of WXS reservoir after long-term water flooding. Lithologic Reservoirs, 2019, 31(3):120-129. [10] 唐梅荣, 张同伍, 白晓虎, 等.孔喉结构对CO2 驱储层伤害程度的影响.岩性油气藏, 2019, 31(3):1-8. TANG M R, ZHANG T W, BAI X H, et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019, 31(3):1-8. [11] SRIVASTAVA R K, HUANG S S, DONG M Z. Asphaltene deposition during CO2 flooding. SPE Production & Facilities, 1999, 14(4):235-245. [12] PAPADIMITRIOU N I, ROMANOS G E, CHARALAMBOPOU G C, et al. Experimental investigation of asphaltene deposition mechanism during oil flow in core samples. Journal of Petroleum Science and Engineering, 2007, 57(3/4):281-293. [13] BEHBAHANI T J, GHOTBI C, TAGHIKHANI V, et al. Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media:A novel experimental study and modified model based on multilayer theory for asphaltene adsorption. Energy & Fuels, 2012, 26(8):5080-5091. [14] 乞照, 安锴胜, 王筱晔, 等. CO2 驱沥青质沉积对致密储层的伤害机理:以鄂尔多斯盆地延长组长8 储层为例. 断块油气田, 2020, 27(3):350-354. QI Z, AN K S, WANG X Y, et al. Damage mechanism of asphaltene deposition to tight reservoir during CO2 flooding:Taking Chang 8 reservoir of Yanchang Formation in Ordos Basin as an example. Fault-Block Oil & Gas Field, 2020, 27(3):350-354. [15] 肖娜, 李实, 林梅钦.CO2-水-岩石相互作用对岩石孔渗参数及孔隙结构的影响:以延长油田35-3井储层为例. 油田化学, 2018, 35(1):85-90. XIAO N, LI S, LIN M Q. Effect of CO2-water-rock interaction on porosity,permeability and pore structure characters of reservoir rock:A case study of 35-3 well in Yanchang Oilfield. Oilfield Chemistry, 2018, 35(1):85-90. [16] ZHANG L, REN B, HUANG H D, et al. CO2 EOR and storage in Jilin oilfield China:Monitoring program and preliminary results. Journal of Petroleum Science & Engineering, 2015, 125:1-12. [17] QIAN K, YANG S L, DOU H E, et al. Experimental investigation on microscopic residual oil distribution during CO2 huff-and-puff process in tight oil reservoirs. Fuel, 2018, 11:28-43. [18] CAO M, GU Y A. Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2 flooding processes. Fuel, 2013, 109:157-166. [19] 雷浩.低渗储层CO2 驱油过程中沉淀规律及防治对策研究. 北京:中国石油大学(北京), 2017. LEI H. Deposition mechanisms and reservoir protection countermeasures of a low-permeability formation in CO2 flooding process. Beijing:China University of Petroleum(Beijing), 2017. [20] 郑希谭, 孙雯悦, 李实, 等.GB/T 26981-2011油气藏流体物性分析方法.北京:石油工业出版社, 2010. ZHENG X T, SUN W Y, LI S, et al. GB/T 26981-2011 Test method for reservoir fluid physical properties. Beijing:Petroleum Industry Press, 2010. [21] 王翠红, 罗爱兰, 王子军. NB/SH/T 0509-2010石油沥青质四组分测定方法.北京:中国石化出版社, 2010. WANG C H, LUO A L, WANG Z J. NB/SH/T 0509-2010 Test method for separation of asphalt into four fractions. Beijing:Sinopec Press, 2010. |
[1] | 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98. |
[2] | 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121. |
[3] | 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71. |
[4] | 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87. |
[5] | 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177. |
[6] | 黄彦庆, 刘忠群, 王爱, 肖开华, 林恬, 金武军. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30. |
[7] | 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95. |
[8] | 米伟伟, 谢小飞, 曹红霞, 马强, 杜永慧, 张琼, 邓长生, 宋珈萱. 鄂尔多斯盆地东南部二叠系山2—盒8段致密砂岩储层特征及主控因素[J]. 岩性油气藏, 2022, 34(6): 101-117. |
[9] | 王永骁, 付斯一, 张成弓, 范萍. 鄂尔多斯盆地东部山西组2段致密砂岩储层特征[J]. 岩性油气藏, 2021, 33(6): 12-20. |
[10] | 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38. |
[11] | 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19. |
[12] | 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62. |
[13] | 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112. |
[14] | 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25. |
[15] | 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48. |
|