岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 36–48.doi: 10.12108/yxyqc.20210205

• 油气地质 • 上一篇    下一篇

鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响

张晓辉1,2, 张娟3,4, 袁京素5, 崔小丽1,2, 毛振华1,2   

  1. 1. 中国石油长庆油田分公司 勘探开发研究院, 西安 710018;
    2. 低渗透油气田勘探开发国家工程实验室, 西安 710018;
    3. 西安石油大学 地球科学与工程学院, 西安 710065;
    4. 陕西省油气成藏地质学重点实验室, 西安 710065;
    5. 中国石油长庆油田分公司 第八采油厂, 西安 710018
  • 收稿日期:2020-03-15 修回日期:2020-06-12 出版日期:2021-04-01 发布日期:2021-03-31
  • 作者简介:张晓辉(1987—),男,硕士,工程师,主要从事低渗透油藏评价与开发方面的研究工作。地址:(710018)陕西省西安市未央区凤城四路长庆科技长庆油田勘探开发研究院。Email:zxh1987_cq@petrochina.com.cn。
  • 基金资助:
    国家科技重大专项课题“鄂尔多斯盆地致密油资源潜力、甜点预测与关键技术应用”(编号:2016 ZX05046005)和中国石油天然气股份有限公司重大科技专项“鄂尔多斯盆地石油富集规律及勘探目标评价”(编号:2016 E-0501)联合资助

Micro pore throat structure and its influence on seepage of Chang 81 tight reservoir in Nanliang-Huachi area,Ordos Basin

ZHANG Xiaohui1,2, ZHANG Juan3,4, YUAN Jingsu5, CUI Xiaoli1,2, MAO Zhenhua1,2   

  1. 1. Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    2. National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi'an 710018, China;
    3. College of Geosciences and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    4. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi'an 710065, China;
    5. No. 8 OilProduction Plant, PetroChina Changqing Oilfield Company, Xi'an 710018, China
  • Received:2020-03-15 Revised:2020-06-12 Online:2021-04-01 Published:2021-03-31

摘要: 鄂尔多斯盆地南梁华池长81油藏孔喉结构多样、渗流特征复杂,成藏及油水关系认识不清,制约了该区石油勘探突破及规模开发进程。通过铸体薄片、恒速压汞、核磁共振、油水相渗测试等方法,系统研究了南梁-华池地区长81储层微观孔隙结构,对比分析了该区不同物性样品微观孔喉结构差异及其对油水渗流特征的影响。结果表明:①储层物性越好,微观非均质性越强,可动流体饱和度越大,无水期驱油效率先增后减,最终水驱油效率越高。②当渗透率大于1.000 mD时,渗透率贡献率主要依靠少数半径大于6.00 μm的连通喉道;当渗透率小于1.000 mD时,渗透率贡献率主要由喉道半径峰值区间的小喉道决定。③连通喉道半径小于0.10 μm的孔隙流体为不可流动的束缚流体,储层物性越好,半径大于0.50 μm喉道控制的孔隙体积越大,可动流体饱和度越高。④研究区油水相渗特征可以分为3类,其中Ⅰ类相渗物性最差、驱油效率最低;Ⅱ类相渗喉道半径为0.50~1.00 μm,两相共渗范围较宽,无水期驱油效率和最终驱油效率均最高;Ⅲ类相渗喉道半径多大于1.50 μm,含水上升较快,无水期驱油效率最低,但最终驱油效率只略低于Ⅱ类相渗最终驱油效率。喉道半径的分布、连通特征决定了储层渗透率和可动流体饱和度大小,影响油水两相渗流规律,对石油充注、成藏以及开发均有重要的影响,是该区油水关系复杂的重要因素之一。该研究成果对分析岩性油藏油水关系、预测有利储层分布具有一定指导意义。

关键词: 致密砂岩, 微观孔隙结构, 恒速压汞, 核磁共振, 渗流特征, 鄂尔多斯盆地

Abstract: Chang 81 reservoir in Nanliang-Huachi area of Ordos Basin is characterized by various pore throat structures,complex seepage characteristics,unclear understanding of reservoir accumulation and oil-water relationship,which restricts the process of oil exploration breakthrough and scale development. The micro pore structure of Chang 81 reservoir in Nanliang-Huachi area was systematically studied by means of casting thin section, constant velocity mercury injection,nuclear magnetic resonance and oil-water relative permeability test,and the difference of micro pore throat structure of samples with different physical properties in the study area and its influence on oil-water seepage characteristics were compared and analyzed. The results show that:(1) The better the reservoir physical properties of the reservoir,the stronger the micro heterogeneity,the greater the movable fluid saturation, the displacement efficiency in the anhydrous period increases first, then decreases, and the higher the final water displacement efficiency.(2) When the permeability is higher than 1.000 mD,the permeability contribution mainly depends on a few connected throats with radius greater than 6.00 μm,while the permeability is lower than 1.000 mD, the permeability contribution is mainly determined by the small throats in the peak range of throats radius. (3) The pore fluid in the radius of connected throat less than 0.10 μm is immovable fluid. The better the reservoir physical properties are,the larger the pore volume controlled by the throat with the radius greater than 0.50 μm is,the higher the saturation of movable fluid is.(4) The characteristics of oil-water relative permeability in the study area can be divided into three types,among which the physical property of type I is poorest and the oil displacement efficiency is the lowest. The throat radius of type Ⅱ is 0.50-1.00 μm,and the permeability range of the two-phase is wide,the oil displacement efficiency and final oil displacement efficiency are highest in anhydrous period. The throat radius of type Ⅲ is greater than 1.50 μm,the water cut rises rapidly,the oil displacement efficiency is lowest in anhydrous period,but its final oil displacement efficiency is slightly lower than that of type Ⅱ. The distribution and connection characteristics of throat radius are one of the important factors of complex oilwater relationship in this area,which determine the permeability of reservoir and the saturation of movable fluid, affect the rule of oil-water two-phase flow,and have an important influence on oil filling,reservoir accumulation and development. The research results have certain guiding significance for analyzing oil-water relationship of lithologic reservoir and predicting favorable reservoir distribution.

Key words: tight sandstone, micro pore structure, constant velocity mercury injection, nuclear magnetic resonance, seepage characteristics, Ordos Basin

中图分类号: 

  • TE122
[1] 张晓丽, 段毅, 何金先, 等.鄂尔多斯盆地华庆地区三叠系延长组长8油层组油气成藏条件分析.地质科技情报, 2013, 32(4):127-131. ZHANG X L, DUAN Y, HE J X, et al. Analysis of reservoir forming conditions of Chang 8 formation in Huaqing area,Ordos Basin. Geological Science and Technology Information, 2013, 32(4):127-131.
[2] 耳闯, 罗安湘, 赵靖舟, 等.鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征.地学前缘, 2016, 23(2):108-117. ER C, LUO A X, ZHAO J Z, et al. Lithofacies features of organicrich shale of the Triassic Yanchang Formation in Huachi area, Ordos Basin. Earth Science Frontiers, 2016, 23(2):108-117.
[3] DESBOIS G, URAI J L, KUKLA P A, et al. High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir:a new approach to investigate microstructures from mm to nm scale combining argon beam cross-sectioning and SEM imaging. Journal of Petroleum Science and Engineering, 2011, 78(2):243-257.
[4] XI K L, CAO Y C, HAILE B G, et al. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Marine and Petroleum Geology, 2016, 76:1-15.
[5] 吴丰, 姚聪, 丛林林, 等.岩石气水两相渗流的玻璃刻蚀驱替实验与有限元数值模拟对比.岩性油气藏, 2019, 31(4):121-132. WU F, YAO C, CONG L L, et al. Comparison of glass etching displacement experiment and finite element numerical simulation for gas-water two-phase seepage in rocks. Lithologic Reservoirs, 2019, 31(4):121-132.
[6] 任大忠, 孙卫, 魏虎, 等.华庆油田长81储层成岩相类型及微观孔隙结构特征.现代地质, 2014, 28(2):379-387. REN D Z, SUN W, WEI H, et al. Types of sandstone reservoir diagenetic facies and microscopic pore structure characteristics of Chang 81 reservoir in Huaqing Oilfield. Geoscience, 2014, 28(2):379-387.
[7] 李长政, 孙卫, 任大忠, 等.华庆地区长81储层微观孔隙结构特征研究.岩性油气藏, 2012, 24(4):19-22. LI C Z, SUN W, REN D Z, et al. Microscopic pore structure characteristics of Chang 81 reservoir in Huaqing area. Lithologic Reservoirs, 2012, 24(4):19-22.
[8] 张纪智, 陈世加, 肖艳, 等.鄂尔多斯盆地华庆地区长8致密砂岩储层特征及其成因. 石油与天然气地质, 2013, 34(5):679-684. ZHANG J Z, CHEN S J, XIAO Y, et al. Characteristics of the Chang 8 tight sandstone reservoirs and their genesis in Huaqing area,Ordos Basin. Oil and Gas Geology, 2013, 34(5):679-684.
[9] 陈世加, 路俊刚, 姚泾利, 等.鄂尔多斯盆地华庆地区长8油层组成藏特征及控制因素.沉积学报, 2012, 30(6):1130-1139. CHEN S J, LU J G, YAO J L, et al. Characteristics of reservoir formation and the controlling factors of Chang 8 oil-bearing formation in Huaqing area of Ordos Basin. Acta Sedimentologica Sinica, 2012, 30(6):1130-1139.
[10] 周晓峰, 丁黎, 杨卫国, 等.鄂尔多斯盆地延长组长8油层组砂岩中绿泥石膜的生长模式.岩性油气藏, 2017, 29(4):1-10. ZHOU X F, DING L, YANG W G, et al. Growth pattern of chlorite film in Chang 8 sandstone of Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2017, 29(4):1-10.
[11] 张晓辉, 冯顺彦, 梁晓伟, 等.鄂尔多斯盆地陇东地区延长组长7段沉积微相及沉积演化特征. 地质学报, 2020, 94(3):957-967. ZHANG X H, FENG S Y, LIANG X W, et al. Sedimentary microfacies identification and inferred evolution of the Chang 7 member of Yanchang Formation in the Longdong area,Ordos Basin. Acta Geologica Sinica, 2020, 94(3):957-967.
[12] 陈怡婷, 刘洛夫, 王梦尧, 等.鄂尔多斯盆地西南部长6、长7储集层特征及其控制因素.岩性油气藏, 2020, 32(1):51-65. CHEN Y T, LIU L F, WANG M Y, et al. Characteristics and controlling factors of Chang 6 and Chang 7 reservoirs in southwestern Ordos Basin. Lithologic Reservoirs, 2020, 32(1):51-65.
[13] 周翔, 何生, 刘萍, 等.鄂尔多斯盆地代家坪地区长6致密油储层孔隙结构特征及分类评价.地学前缘.2016, 23(3):253-265. ZHOU X, HE S, LIU P, et al. Characteristics and classification of tight oil pore structure in reservoir Chang 6 of Daijiaping area, Ordos Basin. Earth Science Frontiers, 2016, 23(3):253-265.
[14] 赵习, 刘波, 郭荣涛, 等.储层表征技术及应用进展.石油实验地质, 2017, 39(2):287-294. ZHAO X, LIU B, GUO R T, et al. Reservoir characterization and its application to development. Petroleum Geology & Experiment, 2017, 39(2):287-294.
[15] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale. SPE 144391, 2011.
[16] 肖佃师, 卢双航, 陆正元, 等.联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构.石油勘探与开发, 2016, 43(6):961-970. XIAO D S, LU S H, LU Z Y, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the porethroat structure of tight sandstones. Petroleum Exploration and Development, 2016, 43(6):961-970.
[17] 李成, 郑庆华, 张三, 等.鄂尔多斯盆地镇北地区长4+5储层微观孔隙结构研究.石油实验地质, 2015, 37(6):729-736. LI C, ZHENG Q H, ZHANG S, et al. Microscopic pore structure of the fourth and fifth members of the Yanchang Formation in Zhenbei area of the Ordos Basin. Petroleum Geology & Experiment, 2015, 37(6):729-736.
[18] 欧阳思琪, 孙卫, 黄何鑫.多方法协同表征特低渗砂岩储层全孔径孔隙结构:以鄂尔多斯盆地合水地区砂岩储层为例.石油实验地质, 2018, 40(4):595-604. OUYANG S Q, SUN W, HUANG H X. Multi-method synergistic characterization of total pore structure of extra-low permeability sandstone reservoirs:Case study of the Heshui area of Ordos Basin. Petroleum Geology & Experiment, 2018, 40(4):595-604.
[19] 黄兴, 李天太, 王香增, 等.致密砂岩储层可动流体分布特征及影响因素:以鄂尔多斯盆地姬塬油田延长组长8油层组为例.石油学报, 2019, 40(5):557-567. HUANG X, LI T T, WANG X Z, et al. Distribution characteristics and its influence factors of movable fluid in tight sandstone reservoir:a case study from Chang 8 oil layer of Yanchang Formation in Jiyuan oilfield, Ordos Basin. Acta Petrolei Sinica, 2019, 40(5):557-567.
[20] 李海波, 郭和坤, 李海舰, 等.致密储层束缚水膜厚度分析.天然气地球科学, 2015, 26(1):186-192. LI H B, GUO H K, LI H J, et al. Thickness analysis of bound water film in tight reservoir. Natural Gas Geoscience, 2015, 26(1):186-192.
[21] 王浩男, 肖晖, 苗晨阳, 等.致密砂岩储层油充注下限综合确定方法及其应用:以鄂尔多斯盆地马岭地区长8油藏为例. 大庆石油地质与开发, 2020, 39(2):186-192. WANG H N, XIAO H, MIAO C Y, et al. Comprehensive determining method of the lower limit of the oil-charging in tight sandstone reservoirs and its application:a case of Chang 8 oil reservoir in Maling area of Ordos Basin. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(2):186-192.
[22] 黎盼, 孙卫, 李长政, 等.低渗透砂岩储层可动流体变化特征研究:以鄂尔多斯盆地马岭地区长8储层为例.地球物理学进展, 2018, 33(6):2394-2402. LI P, SUN W, LI C Z, et al. Characteristics of movable fluids in the low permeability sandstone reservoir:Taking the Chang 8 reservoir of Maling oilfield, Ordos Basin as an example. Progress in Geophysics, 2018, 33(6):2394-2402.
[23] 柳娜, 周兆华, 任大忠, 等.致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例.岩性油气藏, 2019, 31(6):14-25. LIU N, ZHOU Z H, REN D Z, et al. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir:a case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige gas field. Lithologic Reservoirs, 2019, 31(6):14-25.
[24] 李琴.相对渗透率法评定储集层岩石表面润湿性.石油实验地质, 1996, 18(4):454-458. LI Q. A relative permeability method for assessing the moisteninc capacity of reservoir rock surface. Petroleum Geology & Experiment, 1996, 18(4):454-458.
[25] 祝春生, 程林松, 阳忠华, 等.特低渗透砂岩油藏渗流特性研究.油气地质与采收率, 2008, 15(2):102-104. ZHU C S, CHENG L S, YANG Z H, et al. Flowing characteristics in extra-low permeability sandstone reservoirs. Petroleum Geology and Recovery Efficiency, 2008, 15(2):102-104.
[26] 李素梅, 张爱云, 王铁冠.原油极性组分的吸附与储层润湿性及研究意义.地质科技情报, 1998, 17(4):65-70. LI S M, ZHANG A Y, WANG T G. Polar-fractions'adsorption of crude oil and wettability of reservoir and their research significance. Geological Science and Technology Information, 1998, 17(4):65-70.
[27] 段秋者, 董兆雄, 罗平亚, 等.沥青在石英砂上吸附特征和润湿性的微观研究.电子显微学报, 2001, 20(4):283-286. DUAN Q Z, DONG Z X, LUO P Y, et al. Adsorption characteristics of asphaltene on silica sand and wettability by SEM. Journal of Chinese Electron Microscopy Society, 2001, 20(4):283-286.
[1] 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19.
[2] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[3] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[4] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[5] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[6] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[7] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[8] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[9] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[10] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[11] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[12] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[13] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[14] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[15] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[5] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[6] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[7] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[8] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .
[9] 于兴河, 姜 辉, 李胜利, 陈永峤. 中国东部中、新生代陆相断陷盆地沉积充填模式及其控制因素 ——以济阳坳陷东营凹陷为例[J]. 岩性油气藏, 2007, 19(1): 39 -45 .
[10] 车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1): 121 -132 .