岩性油气藏 ›› 2024, Vol. 36 ›› Issue (6): 181188.doi: 10.12108/yxyqc.20240617
• 石油工程与油气田开发 • 上一篇
崔传智1, 李静1, 吴忠维2
CUI Chuanzhi1, LI Jing1, WU Zhongwei2
摘要: 利用数值模拟方法建立CO2非混相驱数值模型,使用水平集法模拟扩散吸附作用下CO2非混相驱和近混相驱的微观渗流规律,并对CO2在孔隙中的微观渗流特征及扩散吸附特征进行研究,选取注入速度、扩散系数、吸附反应速率常数等参数研究近混相驱微观渗流特征的影响因素。研究结果表明:①相场法CO2驱数值模拟采出程度为51.29%,水平集法CO2驱数值模拟采出程度为53.60%,因此水平集法更适用于CO2非混相驱的渗流过程模拟。②非混相驱条件下,CO2优先向大孔隙扩散,采收率为87.7%,出口气体体积分数为71.60%,CO2最大表面吸附浓度为3.16×10-4 mol/m2;近混相驱条件下,CO2更易向小孔隙扩散,采收率为91.1%,出口含气率为97.01%,CO2最大表面吸附浓度为5.81×10-4 mol/m2。③近混相驱微观渗流特征受注入速度、扩散系数、吸附反应速率常数等因素影响。注入速度增大,出口含气率和采收率均提高;扩散系数和吸附反应速率常数增大,会使采收率提高,出口含气率下降。
中图分类号:
[1] 米伟伟,谢小飞,曹红霞,等. 鄂尔多斯盆地东南部二叠系山2— 盒8段致密砂岩储层特征及主控因素[J]. 岩性油气藏,2022, 34(6):101-117. MI Weiwei,XIE Xiaofei,CAO Hongxia,et al. Characteristics and main controlling factors of tight sandstone reservoirs of Permian Shan 2 to He 8 members in southeastern Ordos Basin [J]. Lithologic Reservoirs,2022,34(6):101-117. [2] 张凤奇,李宜浓,罗菊兰,等. 鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征[J]. 岩性油气藏,2022,34(5):50-62. ZHANG Fengqi,LI Yinong,LUO Julan,et al. Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin[J]. Lithologic Reservoirs, 2022,34(5):50-62. [3] 文志刚,罗雨舒,刘江艳,等. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏,2022,34(6):47-59. WEN Zhigang,LUO Yushu,LIU Jiangyan,et al. Pore structure characteristics and genetic mechanism of Triassic Chang 7 shale oil reservoir in Longdong area[J]. Lithologic Reservoirs, 2022,34(6):47-59. [4] 程丹华,焦霞蓉,王建伟,等. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏,2022,34(3):70-81. CHENG Danhua,JIAO Xiarong,WANG Jianwei,et al. Shale oil reservoir characteristics and significance of the first member of Paleogene Shahejie Formation in Nanpu Sag,Huanghua De pression[J]. Lithologic Reservoirs,2022,34(3):70-81. [5] 张记刚,杜猛,陈超,等. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏,2022,34(4):89-102. ZHANG Jigang,DU Meng,CHEN Chao,et al. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2022,34(4):89-102. [6] 高云丛,赵密福,王建波,等. 特低渗油藏CO2非混相驱生产特征与气窜规律[J]. 石油勘探与开发,2014,41(1):79-85. GAO Yuncong,ZHAO Mifu,WANG Jianbo,et al. Perfor mance and gas breakthrough during CO2 immiscible flooding in ultra-low permeability reservoirs[J]. Petroleum Exploration and Development,2014,41(1):79-85. [7] 赵凤兰,张蒙,侯吉瑞,等. 低渗透油藏CO2混相条件及近混相驱区域确定[J]. 油田化学,2018,35(2):273-277. ZHAO Fenglan,ZHANG Meng,HOU Jirui,et al. Determina tion of CO2 miscible condition and near-miscible region flood ing in low permeability reservoir[J]. Oilfield Chemistry,2018, 35(2):273-277. [8] 张磊,赵凤兰,侯吉瑞,等. 特低渗油藏CO2非混相驱封窜实验研究[J]. 西安石油大学学报(自然科学版),2013,28(5): 62-65. ZHANG Lei,ZHAO Fenglan,HOU Jirui,et al. Experimental research of CO2 channeling law in the immiscible CO2 flooding of the ultra-low permeability reservoirs[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2013,28(5):62-65. [9] FAN Lingyi,CHEN Junbin,ZHU Jianhong,et al. Experimental study on enhanced shale oil recovery and remaining oil distribu tion by CO2 flooding with nuclear magnetic resonance technol ogy[J]. Energy & Fuels,2022,36(4):1973-1985. [10] 李蕾,郑自刚,杨承伟,等. 超低渗油藏超临界CO2驱油特征及原油动用能力[J]. 科学技术与工程,2021,21(29):12551- 12558. LI Lei,ZHENG Zigang,YANG Chengwei,et al. Displacement characteristics and capacity of supercritical CO2 flooding in ul tra low permeability reservoirs[J]. Science Technology and En gineering,2021,21(29):12551-12558. [11] CAI Mingyu,SU Yuliang,HAO Yongmao,et al. Monitoring oil displacement and CO2 trapping in low-permeability media us ing NMR:A comparison of miscible and immiscible flooding [J]. Fuel,2021,305:121606. [12] WANG Yongqi,FAN Zhiqiang,WANG Qilin,et al. Lattice boltzmann multiphase flow simulations for CO2-enhanced oil recovery using various modes of immiscible CO2 injection[J]. Energy & Fuels,2023,37(16):12154-12165. [13] 和龙,任少坤,张宏. 考虑传质的CO2非混相驱流动模式及其提采机理[J]. 陕西科技大学学报,2023,41(1):96-102. HE Long,REN Shaokun,ZHANG Hong. Flow pattern and en hanced oil recovery mechanism of CO2 immiscible flooding by considering mass transfer[J]. Journal of Shaanxi University of Science & Technology,2023,41(1):96-102. [14] OSHER S,SETHIAN J A. Fronts propagating with curvaturedependent speed:algorithms based on Hamilton-Jacobi formu lations [J]. Journal of Computational Physics,1988,79(1):12-49. [15] TANG Guangrong,JIN Jian,CHEN Qiulan,et al. Simulations of centrifugal microfluidic droplet formation using two-phase level set method[C]. 2014 International Conference on Ma nipulation,Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE,2014:155-159. [16] XIAO Pufu,YANG Zhengming,WANG Xuewu,et al. Experi mental investigation on CO2 injection in the Daqing extra/ultralow permeability reservoir[J]. Journal of Petroleum Science and Engineering,2017,149:765-771. [17] ZHU Guangpu,YAO Jun,LI Aifen,et al. Pore-scale investiga tion of carbon dioxide-enhanced oil recovery[J]. Energy & Fu els,2017,31(5):5324-5332. [18] MA Qingsong,ZHENG Zhanpeng,FAN Jiarui,et al. Pore-scale simulations of CO2/oil flow behavior in heterogeneous porous media under various conditions[J]. Energies,2021,14(3):533. [19] EISWIRTH R T,BART H J,ATMAKIDIS T,et al. Experimen tal and numerical investigation of a free rising droplet[J]. Chemical Engineering and Processing-Process Intensification, 2011,50(7):718-727. [20] 王一帆. CO2在烷烃体相及致密岩心中扩散传质规律研究[D]. 青岛:中国石油大学(华东),2020. WANG Yifan. Study on CO2 diffusion in alkanes and tight cores [D]. Qingdao:China University of Petroleum(East China), 2020. |
[1] | 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188. |
[2] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[3] | 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22. |
[4] | 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177. |
[5] | 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168. |
[6] | 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159. |
[7] | 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141. |
[8] | 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51. |
[9] | 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188. |
[10] | 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171. |
[11] | 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188. |
[12] | 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171. |
[13] | 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142. |
[14] | 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165. |
[15] | 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160. |
|