岩性油气藏 ›› 2024, Vol. 36 ›› Issue (6): 181–188.doi: 10.12108/yxyqc.20240617

• 石油工程与油气田开发 • 上一篇    

扩散吸附作用下CO2非混相驱微观渗流特征模拟

崔传智1, 李静1, 吴忠维2   

  1. 1. 中国石油大学(华东)石油工程学院, 山东 青岛 266580;
    2. 长江大学 石油工程学院, 武汉 430100
  • 收稿日期:2023-07-04 修回日期:2023-09-17 出版日期:2024-11-01 发布日期:2024-11-04
  • 第一作者:崔传智(1970—),男,博士,教授,主要从事油气渗流理论、油气田开发技术的教学与研究工作。地址:(266580)山东省青岛市黄岛区长江西路66号。Email:ccz2008@126.com
  • 基金资助:
    国家自然科学基金面上项目“致密油藏多段压裂水平井时空耦合流动模拟及参数优化方法”(编号:51974343)资助。

Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption

CUI Chuanzhi1, LI Jing1, WU Zhongwei2   

  1. 1. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
  • Received:2023-07-04 Revised:2023-09-17 Online:2024-11-01 Published:2024-11-04

摘要: 利用数值模拟方法建立CO2非混相驱数值模型,使用水平集法模拟扩散吸附作用下CO2非混相驱和近混相驱的微观渗流规律,并对CO2在孔隙中的微观渗流特征及扩散吸附特征进行研究,选取注入速度、扩散系数、吸附反应速率常数等参数研究近混相驱微观渗流特征的影响因素。研究结果表明:①相场法CO2驱数值模拟采出程度为51.29%,水平集法CO2驱数值模拟采出程度为53.60%,因此水平集法更适用于CO2非混相驱的渗流过程模拟。②非混相驱条件下,CO2优先向大孔隙扩散,采收率为87.7%,出口气体体积分数为71.60%,CO2最大表面吸附浓度为3.16×10-4 mol/m2;近混相驱条件下,CO2更易向小孔隙扩散,采收率为91.1%,出口含气率为97.01%,CO2最大表面吸附浓度为5.81×10-4 mol/m2。③近混相驱微观渗流特征受注入速度、扩散系数、吸附反应速率常数等因素影响。注入速度增大,出口含气率和采收率均提高;扩散系数和吸附反应速率常数增大,会使采收率提高,出口含气率下降。

关键词: CO2非混相驱, 微观渗流特征, 注入速度, 扩散系数, 吸附反应速率常数, 采收率, 数值模拟

Abstract: Based on a two-dimensional model,a numerical simulation method was used to establish a numerical model of CO2 immiscible flooding,and the level set method is used to simulate the microscopic seepage laws of CO2 immiscible flooding and near miscible flooding under diffusion and adsorption. The microscopic seepage characteristics and diffusion adsorption characteristics of CO2 in pores were studied,and the influences of the injection velocity,diffusion coefficient,and adsorption reaction rate constant on the microscopic seepage charac teristics of near miscible flooding were analyzed. The results show that:(1)The degree of reserve recovery of the CO2 flooding numerical simulation using the phase field method is 51.29%,and the degree of reserve recov ery of theCO2 flooding numerical simulation using the level set method is 53.60%. The level set method is more suitable for simulating the seepage process of CO2 immiscible flooding.(2)Under immiscible flooding condi tions,CO2 preferentially diffuses into large pores,with a recovery efficiency of 87.7%,an outlet gas content rate of 71.60%,and a maximumCO2 surface adsorption concentration of 3.16×10-4 mol/m2. Under the conditions of near miscible flooding,CO2 is more likely to diffuse into small pores,with a recovery efficiency of 91.1%,an outlet gas content rate of 97.01%,and a maximum CO2 surface adsorption concentration of 5.81×10-4 mol/m2. (3)The microscopic seepage of miscible flooding is influenced by factors such as the injection velocity,diffu sion coefficient,and adsorption reaction rate constant. The injection rate increases,resulting in an increase in both the gas content and recovery rate at the outlet. An increase in diffusion coefficient and adsorption reaction rate constant will lead to an increase in recovery efficiency and a decrease in outlet gas content.

Key words: CO2 immiscible flooding, microscopic seepage characteristics, injection velocity, diffusion coeffi cient, adsorption reaction rate constant, recovery efficiency, numerical simulation

中图分类号: 

  • TE357.45
[1] 米伟伟,谢小飞,曹红霞,等. 鄂尔多斯盆地东南部二叠系山2— 盒8段致密砂岩储层特征及主控因素[J]. 岩性油气藏,2022, 34(6):101-117. MI Weiwei,XIE Xiaofei,CAO Hongxia,et al. Characteristics and main controlling factors of tight sandstone reservoirs of Permian Shan 2 to He 8 members in southeastern Ordos Basin [J]. Lithologic Reservoirs,2022,34(6):101-117.
[2] 张凤奇,李宜浓,罗菊兰,等. 鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征[J]. 岩性油气藏,2022,34(5):50-62. ZHANG Fengqi,LI Yinong,LUO Julan,et al. Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin[J]. Lithologic Reservoirs, 2022,34(5):50-62.
[3] 文志刚,罗雨舒,刘江艳,等. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏,2022,34(6):47-59. WEN Zhigang,LUO Yushu,LIU Jiangyan,et al. Pore structure characteristics and genetic mechanism of Triassic Chang 7 shale oil reservoir in Longdong area[J]. Lithologic Reservoirs, 2022,34(6):47-59.
[4] 程丹华,焦霞蓉,王建伟,等. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏,2022,34(3):70-81. CHENG Danhua,JIAO Xiarong,WANG Jianwei,et al. Shale oil reservoir characteristics and significance of the first member of Paleogene Shahejie Formation in Nanpu Sag,Huanghua De pression[J]. Lithologic Reservoirs,2022,34(3):70-81.
[5] 张记刚,杜猛,陈超,等. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏,2022,34(4):89-102. ZHANG Jigang,DU Meng,CHEN Chao,et al. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2022,34(4):89-102.
[6] 高云丛,赵密福,王建波,等. 特低渗油藏CO2非混相驱生产特征与气窜规律[J]. 石油勘探与开发,2014,41(1):79-85. GAO Yuncong,ZHAO Mifu,WANG Jianbo,et al. Perfor mance and gas breakthrough during CO2 immiscible flooding in ultra-low permeability reservoirs[J]. Petroleum Exploration and Development,2014,41(1):79-85.
[7] 赵凤兰,张蒙,侯吉瑞,等. 低渗透油藏CO2混相条件及近混相驱区域确定[J]. 油田化学,2018,35(2):273-277. ZHAO Fenglan,ZHANG Meng,HOU Jirui,et al. Determina tion of CO2 miscible condition and near-miscible region flood ing in low permeability reservoir[J]. Oilfield Chemistry,2018, 35(2):273-277.
[8] 张磊,赵凤兰,侯吉瑞,等. 特低渗油藏CO2非混相驱封窜实验研究[J]. 西安石油大学学报(自然科学版),2013,28(5): 62-65. ZHANG Lei,ZHAO Fenglan,HOU Jirui,et al. Experimental research of CO2 channeling law in the immiscible CO2 flooding of the ultra-low permeability reservoirs[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2013,28(5):62-65.
[9] FAN Lingyi,CHEN Junbin,ZHU Jianhong,et al. Experimental study on enhanced shale oil recovery and remaining oil distribu tion by CO2 flooding with nuclear magnetic resonance technol ogy[J]. Energy & Fuels,2022,36(4):1973-1985.
[10] 李蕾,郑自刚,杨承伟,等. 超低渗油藏超临界CO2驱油特征及原油动用能力[J]. 科学技术与工程,2021,21(29):12551- 12558. LI Lei,ZHENG Zigang,YANG Chengwei,et al. Displacement characteristics and capacity of supercritical CO2 flooding in ul tra low permeability reservoirs[J]. Science Technology and En gineering,2021,21(29):12551-12558.
[11] CAI Mingyu,SU Yuliang,HAO Yongmao,et al. Monitoring oil displacement and CO2 trapping in low-permeability media us ing NMR:A comparison of miscible and immiscible flooding [J]. Fuel,2021,305:121606.
[12] WANG Yongqi,FAN Zhiqiang,WANG Qilin,et al. Lattice boltzmann multiphase flow simulations for CO2-enhanced oil recovery using various modes of immiscible CO2 injection[J]. Energy & Fuels,2023,37(16):12154-12165.
[13] 和龙,任少坤,张宏. 考虑传质的CO2非混相驱流动模式及其提采机理[J]. 陕西科技大学学报,2023,41(1):96-102. HE Long,REN Shaokun,ZHANG Hong. Flow pattern and en hanced oil recovery mechanism of CO2 immiscible flooding by considering mass transfer[J]. Journal of Shaanxi University of Science & Technology,2023,41(1):96-102.
[14] OSHER S,SETHIAN J A. Fronts propagating with curvaturedependent speed:algorithms based on Hamilton-Jacobi formu lations [J]. Journal of Computational Physics,1988,79(1):12-49.
[15] TANG Guangrong,JIN Jian,CHEN Qiulan,et al. Simulations of centrifugal microfluidic droplet formation using two-phase level set method[C]. 2014 International Conference on Ma nipulation,Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE,2014:155-159.
[16] XIAO Pufu,YANG Zhengming,WANG Xuewu,et al. Experi mental investigation on CO2 injection in the Daqing extra/ultralow permeability reservoir[J]. Journal of Petroleum Science and Engineering,2017,149:765-771.
[17] ZHU Guangpu,YAO Jun,LI Aifen,et al. Pore-scale investiga tion of carbon dioxide-enhanced oil recovery[J]. Energy & Fu els,2017,31(5):5324-5332.
[18] MA Qingsong,ZHENG Zhanpeng,FAN Jiarui,et al. Pore-scale simulations of CO2/oil flow behavior in heterogeneous porous media under various conditions[J]. Energies,2021,14(3):533.
[19] EISWIRTH R T,BART H J,ATMAKIDIS T,et al. Experimen tal and numerical investigation of a free rising droplet[J]. Chemical Engineering and Processing-Process Intensification, 2011,50(7):718-727.
[20] 王一帆. CO2在烷烃体相及致密岩心中扩散传质规律研究[D]. 青岛:中国石油大学(华东),2020. WANG Yifan. Study on CO2 diffusion in alkanes and tight cores [D]. Qingdao:China University of Petroleum(East China), 2020.
[1] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[2] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[3] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[4] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[5] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
[6] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[7] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[8] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
[9] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[10] 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
[11] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[12] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[13] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[14] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[15] 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[2] 李庆忠. 岩性油气藏地震勘探若干问题讨论( Ⅰ)[J]. 岩性油气藏, 2008, 20(2): 1 -5 .
[3] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[4] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .
[5] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[6] 刘全新, 高建虎, 董雪华. 储层预测中的非线性反演方法[J]. 岩性油气藏, 2007, 19(1): 81 -85 .
[7] 刘伟方, 段永华, 高建虎, 张喜梅, 孙勤华. 利用地震属性预测碳酸盐岩储层[J]. 岩性油气藏, 2007, 19(1): 101 -104 .
[8] 辛广柱, 刘 赫, 彭建亮, 邵红君. 地质因素和资料因素对地震属性的影响[J]. 岩性油气藏, 2007, 19(1): 105 -108 .
[9] 郑荣才, 耿威, 周刚, 韩永林, 王海红, 文华国. 鄂尔多斯盆地白豹地区长6 砂岩成岩作用与成岩相研究[J]. 岩性油气藏, 2007, 19(2): 1 -8 .
[10] 王建功, 王天琦, 卫平生, 梁苏娟, 韩小强. 大型坳陷湖盆浅水三角洲沉积模式———以松辽盆地北部葡萄花油层为例[J]. 岩性油气藏, 2007, 19(2): 28 -34 .