岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 163–171.doi: 10.12108/yxyqc.20210516

• 油气田开发 • 上一篇    下一篇

砂岩油藏特高含水期的水驱特征

李传亮1,2, 王凤兰2, 杜庆龙2, 由春梅2, 单高军2, 李斌会2, 朱苏阳1   

  1. 1. 西南石油大学 石油与天然气工程学院, 成都 610599;
    2. 中国石油大庆油田有限责任公司勘探开发研究院, 黑龙江 大庆 163712
  • 收稿日期:2020-12-25 修回日期:2021-02-18 出版日期:2021-10-01 发布日期:2021-09-30
  • 第一作者:李传亮(1962-),男,博士,教授,主要从事油藏工程的教学与科研工作。地址:(610599)四川省成都市新都区新都大道8号。Email:cllipe@qq.com。
  • 基金资助:
    国家科技重大专项“大庆长垣特高含水油田提高采收率示范工程”(编号:2016ZX05054)和西南石油大学“专创融合”项目联合资助

Water displacement rules of sandstone reservoirs at extra-high water-cut stage

LI Chuanliang1,2, WANG Fenglan2, DU Qinglong2, YOU Chunmei2, SHAN Gaojun2, LI Binhui2, ZHU Suyang1   

  1. 1. School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610599, China;
    2. Research Institute of Exploration & Development, PetroChina Daqing Oilfield Company Limited, Daqing 163712, Heilongjiang, China
  • Received:2020-12-25 Revised:2021-02-18 Online:2021-10-01 Published:2021-09-30

摘要: 注水开发砂岩油藏进入特高含水期后,其生产特征和水驱规律都与高含水阶段有所不同,高含水阶段的水驱规律不能用于指导特高含水期的生产实践。为了做好特高含水期的油藏开发管理工作,基于DT油藏的生产数据,从生产特征和驱油机理出发,研究了特高含水期的水驱规律,取得了以下主要认识。特高含水期油藏呈现出了"一高两低"的生产特征,即高含水、低产量、低采出程度。产量递减率和含水上升速度也都较低。地下存在大量的剩余油可以挖潜。油藏存在水驱采油和水洗采油两个基本的开采机理,水驱采油的对象为连续型剩余油,开采效果较好;水洗采油的对象为离散型剩余油,开采效果较差。油藏开发初期以水驱采油为主,然后转变为开发后期以水洗采油为主的开发过程。高含水阶段的水驱曲线和水油比曲线近似为一直线,特高含水期的水驱曲线和水油比曲线出现上翘,表明水驱采油向水洗采油过程的转变,开采效果变差。用高含水阶段水驱规律预测的油藏采收率比用特高含水期水驱规律预测的采收率高,DT油藏平均高了5.24%。提高采收率的方法都是通过提高采出程度来实现的,具体包括3个方面:扩大波及、加深水洗、提高驱油效率。长期水洗也可以提高油藏采出程度。特高含水期的油藏开发仍应以扩大波及为主,并带动驱油效率一起提高。

关键词: 砂岩油藏, 水驱, 水洗, 含水率, 特高含水, 采收率, 水油比, 水驱曲线, 波及系数

Abstract: Water-flooded sandstone reservoirs showed quite different production characteristics and water displacement rules at the extra-high water-cut stage from the high water-cut stage. The theoretical models of reservoirs at high water-cut stage cannot be applied to the production practice of reservoirs at the extra-high water-cut stage. In order to manage the reservoir production at the extra-high water-cut stage properly, a study was carried out based on the production data of reservoir DT to find out the water displacement rules and displacement mechanism. There are some conclusions as following. The reservoirs at extra-high water-cut stage showed the main aspects of "one high and two lows", i.e. high water-cut, low production rate and low recovery factor. The decline ratio of production rate and the rising rate of water-cut are also quite low. There is tremendous remaining oil underground being worth recovering. Reservoir oil is displaced through two basic mechanisms, one is water-driving recovery and the other is water-flooding recovery. The continuous oil is produced by water-driving recovery with high efficiency, and the discrete oil is produced by water-flooding recovery with low efficiency. At the early stage of development, reservoirs are produced mainly through water-driving recovery, while in the late stage mainly through water-flooding recovery which is converted from the water-driving recovery in the early stage. The water drive curve and the water-oil ratio curve are approximate straight lines at high water-cut stage. However, the lines are up warding at extra-high water-cut stage from high water-cut stage, which means that the recovery mechanism is converting from the water-driving to the water-flooding with the recovery efficiency changing worse. The efficiency of oil recovery predicted by the displacement rules of high water-cut stage is higher than that predicted by the displacement rules of extra-high water-cut stage, for example it is 5.24 percent points for reservoir DT. The recovery efficiency enhancement of reservoirs is always realized through the enhancement of recovery factor, which includes three measures of expanding water-sweep, deepening water-flooding and increasing displacement efficiency. Long term water flooding can also enhance the reservoir recovery factor. Reservoir development at extra-high water-cut stage should be focused on the increasing of sweep factor, meanwhile the displacement efficiency of oil will be increased simultaneously during development of reservoirs.

Key words: sandstone reservoir, water drive, water flood, water-cut, extra-high water-cut, efficiency of recovery, water-oil ratio, water drive curve, sweep factor

中图分类号: 

  • TE341
[1] 邹存友, 于立君.中国水驱砂岩油田含水与采出程度的量化关系. 石油学报, 2012, 33(2):288-292. ZOU C Y, YU L J. A quantization relationship between water cut and degree of reservoir recovery for water-flooding sandstone reservoirs in China. Acta Petrolei Sinica, 2012, 33(2):288-292.
[2] 朱丽红, 杜庆龙, 姜雪岩, 等.陆相多层砂岩油藏特高含水期三大矛盾特征及对策.石油学报, 2015, 36(2):210-216. ZHU L H, DU Q L, JIANG X Y, et al. Characteristics and strategies of three major contradictions for continental facies multilayered sandstone reservoir at ultra-high water cut stage. Acta Petrolei Sinica, 2015, 36(2):210-216.
[3] 陈元千, 王小林, 姚尚林, 等.加密井提高注水开发油田采收率的评价方法.新疆石油地质, 2009, 30(6):705-709. CHEN Y Q, WANG X L, YAO S L, et al. A method for evaluation of EOR of waterflooding oilfield by infill well process. Xinjiang Petroleum Geology, 2009, 30(6):705-709.
[4] 杜庆龙.长期注水开发砂岩油田储层渗透率变化规律及微观机理.石油学报, 2016, 37(9):1159-1164. DU Q L. Variation law and microscopic mechanism of permeability in sandstone reservoir during long-term water flooding development. Acta Petrolei Sinica, 2016, 37(9):1159-1164.
[5] 王振鹏, 陈民锋, 尹承哲. 砾岩油藏水驱开发潜力分级评价. 岩性油气藏, 2018, 30(5):109-115. WANG Z P, CHEN M F, YIN C Z. Development potential classification evaluation for water-flooding in conglomerate reservoir. Lithologic Reservoirs, 2018, 30(5):109-115.
[6] 周焱斌, 何逸凡, 章威, 等.海上注水开发油田单井经济极限含水率分析.岩性油气藏, 2019, 31(3):130-134. ZHOU Y B, HE Y F, ZHANG W, et al. Economic limit water cut of single well in offshore waterflooding oilfield. Lithologic Reservoirs, 2019, 31(3):130-134.
[7] 贾红兵, 赵辉, 包志晶, 等.水驱开发效果评价新方法及其矿场应用.岩性油气藏, 2019, 31(5):101-107. JIA H B, ZHAO H, BAO Z J, et al. New method for evaluating water flooding development effect and its oil field application. Lithologic Reservoirs, 2019, 31(5):101-107.
[8] 童宪章.天然水驱和人工注水油藏的统计规律探讨.石油勘探与开发, 1978, 4(6):58-64. TONG X Z. Study on statistical characteristics of natural water flooding and artificial water flooding reservoir. Petroleum Exploration and Development, 1978, 4(6):58-64.
[9] 童宪章.油井产状和油藏动态分析.北京:石油工业出版社, 1981:37-60. TONG X Z. Analysis of well production and reservoir dynamics. Beijing:Petroleum Industry Press, 1981:37-60.
[10] 陈元千.水驱曲线关系式的推导. 石油学报, 1985, 6(2):69-78. CHEN Y Q. Induction of water drive type curve. Acta Petrolei Sinica, 1985, 6(2):69-78.
[11] 陈元千, 杜霞.水驱曲线关系式的对比及直线段出行时间的判断.石油勘探与开发, 1986, 7(6):55-63. CHEN Y Q, DU X. Induction of water drive curve and determination of start point of linear interval. Petroleum Exploration and Development, 1986, 7(6):55-63.
[12] 陈元千.水驱曲线的分类对比与评价.新疆石油地质, 1994, 15(4):348-355. CHEN Y Q. Classification,comparison and evaluation of water drive type curve. Xinjiang Petroleum Geology, 1994, 15(4):348-355.
[13] 陈元千.水驱曲线的典型图版及应用. 新疆石油地质, 1991, 12(4):323-327. CHEN Y Q. Chart of water flooding type curve and its application. Xinjiang Petroleum Geology, 1991, 12(4):323-327.
[14] 陈元千, 郭二鹏. 广义童氏图版的建立与应用. 新疆石油地质, 2014, 35(2):187-191. CHEN Y Q, GUO E P. Establishment and application of generalized Tong's chart. Xinjiang Petroleum Geology, 2014, 35(2):187-191.
[15] 陈元千, 陶自强.高含水期水驱曲线的推导及上翘问题的分析.断块油气田, 1997, 4(3):19-24. CHEN Y Q, TAO Z Q. Derivation of water drive curve at high water-cut stage and its analysis of upwarding problem. FaultBlock Oil and Gas Field, 1997, 4(3):19-24.
[16] 陈元千.一种新型水驱曲线关系式的推导及应用.石油学报, 1993, 14(2):65-73. CHEN Y Q. Derivation of a new type of water displacement curve and its application. Acta Petrolei Sinica, 1993, 14(2):65-73.
[17] 俞启泰.预测水驱砂岩油藏含水上升规律的新方法.新疆石油地质, 2002, 23(4):314-315. YU Q T. A new method for predicting laws of water cut raising in sandstone reservoir by water flooding process. Xinjiang Petroleum Geology, 2002, 23(4):314-315.
[18] 俞启泰.一种广义水驱特征曲线.石油勘探与开发, 1998, 25(5):48-50. YU Q T. A new generalized water drive cure. Petroleum Exploration and Development, 1998, 25(5):48-50.
[19] 俞启泰. 几种重要水驱特征曲线的油水渗流特. 石油学报, 1999, 20(1):56-60. YU Q T. Characteristics of oil-water seepage flow for several important water drive curves. Acta Petrolei Sinica, 1999, 20(1):56-60.
[20] 张金庆. 一种简单实用的水驱特征曲线. 石油勘探与开发, 1998, 25(3):56-57. ZHANG J Q. A new practical water displacement curve. Petroleum Exploration and Development, 1998, 25(3):56-57.
[21] 万吉业.水驱油田的驱替系列及其应用(Ⅰ).石油勘探与开发, 1982, 9(6):65-73. WAN J Y. A series of displacement characteristic cure and its application on the prediction performance of water flooded oil reservoirs(Ⅰ). Petroleum Exploration and Development, 1982, 9(6):65-73.
[22] 万吉业. 水驱油田的驱替系列及其应用(Ⅱ). 石油勘探与开发, 1983, 10(1):44-48. WAN J Y. A series of displacement characteristic cure and its application on the prediction performance of water flooded oil reservoirs(Ⅱ). Petroleum Exploration and Development, 1983, 10(1):44-48.
[23] 宋兆杰, 李治平, 赖枫鹏, 等.高含水期油田水驱特征曲线关系式的理论推导.石油勘探与开发, 2013, 40(2):201-208. SONG Z J, LI Z P, LAI F P, et al. Derivation of waterflooding characteristic curve for high water-cut oilfields. Petroleum Exploration and Development, 2013, 40(2):201-208.
[24] 崔传智, 徐建鹏, 王端平.特高含水阶段新型水驱特征曲线. 石油学报, 2015, 36(10):1267-1271. CUI C Z, XU J P, WANG D P. A new water flooding characteristic curve at ultra-high water cut stage. Acta Petrolei Sinica, 2015, 36(10):1267-1271.
[25] 王小林, 于立君, 李治平.特高含水期新型水驱特征曲线.大庆石油地质与开发, 2015, 34(6):54-56. WANG X L, YU L J, LI Z P. New waterflooding characteristic curves at the stage of extra-high water cut. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(6):54-56.
[26] 邓森, 王怒涛, 孟令强, 等. 高含水期两种新型水驱特征曲线的建立与应用. 大庆石油地质与开发, 2017, 36(4):58-63. DENG S, WANG N T, MENG L Q, et al. Establishment and application of the new two-type water-flooding characteristic curves at high water cut stage. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(4):58-63.
[27] 王继强, 石成方, 纪淑红, 等.特高含水期新型水驱特征曲线. 石油勘探与开发, 2017, 44(6):955-960. WANG J Q, SHI C F, JI S H, et al. New water drive characteristic curves at ultra-high water cut stage. Petroleum Exploration and Development, 2017, 44(6):955-960.
[28] 梁保红.特高含水期水驱特征曲线拐点时机判别新方法.油气地质与采收率, 2015, 22(5):103-106. LIANG B H. New method to determine the time of turning point of water drive characteristic curve in ultra-high water cut stage. Petroleum Geology and Recovery Efficiency, 2015, 22(5):103-106.
[29] 孙红霞. 高含水期水驱特征曲线上翘新认识. 特种油气藏, 2016, 23(1):92-95. SUN H X. New understanding of upward waterflooding characteristic curve in high water-cut stage. Special Oil & Gas Reservoirs, 2016, 23(1):92-95.
[30] 李传亮, 朱苏阳.关于油藏含水上升规律的若干问题.岩性油气藏, 2016, 28(3):1-5. LI C L, ZHU S Y. Some topics about water cut rising rule in reservoirs. Lithologic Reservoirs, 2016, 28(3):1-5.
[31] 李传亮. 油藏工程原理.3版. 北京:石油工业出版社, 2017:296-297. LI C L. Fundamentals of reservoir engineering. 3rd ed. Beijing:Petroleum Industry Press, 2017:296-297.
[32] 叶庆全, 袁敏. 油气田开发常用名词解释.3版. 北京:石油工业出版社, 2009:359-360. YE Q Q, YUAN M. Terminology of oil and gas field development. 3rd ed. Beijing:Petroleum Industry Press, 2009:359-360.
[33] 叶仲斌.提高采收率原理.2版. 北京:石油工业出版社, 2007:25-42. YE Z B. Principle of enhanced oil recovery. 2nd ed. Beijing:Petroleum Industry Press, 2007:25-42.
[34] G P Willhilte.注水.刘民中, 唐金华, 译.北京:石油工业出版社, 1992:92-106. WILLHILTE G P. Water flooding. LIU M Z, TANG J H, trans. Beijing:Petroleum Industry Press, 1992:92-106.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[3] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[4] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[5] 钱真, 毛志强, 郑伟, 黄远军, 陈立峰, 曾慧勇, 李岗, 宋嫒. 井间单套缝洞型油藏橡胶颗粒调剖堵水实验[J]. 岩性油气藏, 2023, 35(4): 161-168.
[6] 孟智强, 葛丽珍, 祝晓林, 王永平, 朱志强. 气顶边水油藏气/水驱产油量贡献评价方法[J]. 岩性油气藏, 2022, 34(5): 162-170.
[7] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[8] 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176.
[9] 张运来, 陈建波, 周海燕, 张吉磊, 章威. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153.
[10] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[11] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[12] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[13] 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134.
[14] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[15] 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .