岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 141–148.doi: 10.12108/yxyqc.20200216

• 油气田开发 • 上一篇    下一篇

强底水稠油油藏水平井三维水驱物理模拟实验

杜旭林1, 戴宗2, 辛晶1, 李海龙2, 曹仁义1, 罗东红2   

  1. 1. 中国石油大学 (北京)石油工程学院, 北京 102249;
    2. 中海石油 (中国) 有限公司深圳分公司, 广东 深圳 518067
  • 收稿日期:2019-06-11 修回日期:2019-08-14 出版日期:2020-03-21 发布日期:2020-01-19
  • 作者简介:杜旭林(1992-),男,中国石油大学(北京)在读博士研究生,研究方向为渗流力学与油气藏数值模拟。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)石油工程学院。Email:duxulin_cup@foxmail.com。
  • 基金资助:
    国家油气重大专项“海上稠油高效开发新技术”(编号:2016ZX05025-004-002)和中国海洋石油科技重大项目“双特高海相砂岩油藏精细描述及剩余油定量预测技术”(编号:CNOOC-KJ 135 ZDXM 22 LTD 02 SZ 2016)资助

Three-dimensional water flooding physical simulation experiment of horizontal well in heavy oil reservoir with strong bottom water

DU Xulin1, DAI Zong2, XIN Jing1, LI Hailong2, CAO Renyi1, LUO Donghong2   

  1. 1. College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Shenzhen Branch Company, CNOOC, Shenzhen 518067, Guangdong, China
  • Received:2019-06-11 Revised:2019-08-14 Online:2020-03-21 Published:2020-01-19

摘要: 珠江口盆地海相砂岩稠油油藏底水活跃,夹层分布复杂,开发难度较大,现有的常规实验规范无法准确地描述此类油藏的波及规律。基于南海东部X稠油油藏特征,设计了水平井三维水驱物理模拟实验,抽提出原油黏度和夹层分布范围作为影响水驱开发效果的主控因素,分析了强底水稠油油藏水驱开发中的水脊形态与波及规律。结果表明:稠油油藏水脊变化过程为局部锥进—局部见水—局部上托—围绕见水点拓展;稠油油藏水驱存在明显的油水过渡带,在开发后期波及范围增大有限,可采用大排量提液措施,重点挖潜在波及区油水过渡带中的剩余油;稠油油藏水驱应关注水平井沿程非均质性;对于含夹层稠油油藏,小范围夹层底部剩余油较少,大范围夹层易发生底水绕流形成次生边水,沿井筒方向波及范围增大幅度较大,在夹层下部残存大量剩余油,表现为“屋檐油”。该成果可为强底水稠油油藏治水防水及剩余油挖潜提供方案。

关键词: 强底水稠油油藏, 三维水驱实验, 夹层, 水脊形态, 波及规律, 珠江口盆地

Abstract: The marine sandstone heavy oil reservoirs in the Pearl River Mouth Basin in the South China Sea are characterized by strong energy of bottom water,non-uniformed distribution of interlayers,and difficult development. Conventional experimental standards barely reveal reservoir sweep feature under high-intensity water flooding. A three-dimensional water flooding physical simulation experiment of horizontal well was designed based on the characteristics of the heavy oil reservoir named X in Pearl River Mouth Basin. The oil viscosity and interlayer distribution range were proposed as the main controlling factors affecting water flooding effect, and the characteristics of water cresting and sweep feature in water flooding development of heavy oil reservoirs with strong bottom water were analyzed. The results show that the changing process of water cresting in heavy oil reservoir is local coning-local water breakthrough-local upper support-expansion around water breakthrough point. There exists obvious oil-water transitional zone in heavy oil reservoir water flooding, and the sweep region is limited in the late stage of development, so large displacement measures can be used. The remaining oil in the oil-water transitional zone of flood sweep zone is a potential tapping target. The problem of heterogeneity along horizontal wells should be focused on the development of heavy oil reservoirs water flooding. For heavy oil reservoirs with interlayer, there is a small amount of residual oil at the bottom of the small range interlayer. Since the secondary edge water is easily formed when the bottom water flows around the large interlayer so that the sweep region along the wellbore direction increases greatly, and there is a large amount of residual oil at the bottom of the interlayer called "eaves oil". This study can provide research direction for waterproofing and tapping potential of remaining oil of heavy oil reservoirs with strong bottom water.

Key words: heavy oil reservoirs with strong bottom water, three-dimensional water flooding experiment, interlayer, water cresting, sweep feature, Pearl River Mouth Basin

中图分类号: 

  • TE345
[1] 周守为.海上油田高效开发技术探索与实践.中国工程科学, 2009, 11(10):55-60. ZHOU S W. Exploration and practice of offshore oil field effective development technology. Strategic Study of CAE, 2009, 11(10):55-60.
[2] 李林, 罗东红, 陶彬, 等.番禺油田薄层边底水稠油油藏水平井含水率上升特征. 油气地质与采收率, 2016, 23(3):106-110. LI L, LUO D H, TAO B, et al. Water cut rising performance of horizontal wells in thin-bed heavy oil reservoir with edge-bottom water in Panyu Oilfield. Petroleum Geology and Recovery Efficiency, 2016, 23(3):106-110.
[3] 郑建军, 李国良, 王庆龙, 等.稠油底水油藏不同井型开发特征分析及应用.石化技术, 2018,(7):12-13. ZHENG J J, LI G L, WANG Q L,et al. Production characteristic analysis and application of different well patterns in heavy oil reservoir with bottom water. Petrochemical Industry Technology, 2018,(7):12-13.
[4] 欧阳雨薇, 胡勇, 张运来, 等.低幅底水稠油油藏水平井含水率上升规律.新疆石油地质, 2017, 38(5):607-610. OUYANG Y W, HU Y, ZHANG Y L, et al. Water cut rising law of low-amplitude heavy oil reservoirs with bottom water in horizontal wells. Xinjiang Petroleum Geology, 2017, 38(5):607-610.
[5] 谢明英, 刘伟新, 戴宗, 等.海相强水驱疏松砂岩稠油薄油藏高效开发实践.中外能源, 2019, 24(6):54-59. XIE M Y, LIU W X, DAI Z, et al. Practice of efficient development in marine strong-water flooding loose sandstone heavy oil thin reservoirs. Sino-global Energy, 2019, 24(6):54-59.
[6] 张运来, 廖新武, 胡勇, 等.海上稠油油田高含水期开发模式研究.岩性油气藏, 2018, 30(4):120-126. ZHANG Y L, LIAO X W, HU Y, et al. Development models for offshore heavy oil field in high water cut stage. Lithologic Reservoirs, 2018, 30(4):120-126.
[7] 沈非, 程林松, 黄世军, 等.基于流管法的普通稠油水驱波及系数计算方法.石油钻采工艺, 2016, 38(5):645-649. SHEN F, CHENG L S, HUANG S J, et al. Calculation of sweep efficiency for water flooding development of conventional heavy oil using the stream-tube method. Oil Drilling & Production Technology, 2016, 38(5):645-649.
[8] 刘翀, 范子菲, 许安著, 等.稠油油藏反九点井网非活塞水驱平面波及系数计算方法. 石油钻采工艺, 2018, 40(2):228-233. LIU C, FAN Z F, XU A Z, et al. A calculation method for the areal sweep efficiency of heavy oil reservoirs by non-piston like waterflood in inverted nine-spot pattern. Oil Drilling & Production Technology, 2018, 40(2):228-233.
[9] 张吉磊, 罗宪波, 张运来, 等.提高稠油底水油藏转注井注水效率研究.岩性油气藏, 2019, 31(4):141-148. ZHANG J L, LUO X B, ZHANG Y L, et al. Improving water injection efficiency of transfer injection well in heavy oil bottom water reservoir. Lithologic Reservoirs, 2019, 31(4):141-148.
[10] 黄世军, 宋倩兰, 程林松, 等.底水稠油油藏单井条件下隔夹层参数研究.西南石油大学学报(自然科学版), 2018, 40(1):131-139. HUANG S J, SONG Q L, CHENG L S, et al. Study on interlayer parameters of bottom water heavy oil reservoir under singlewell condition. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(1):131-139.
[11] 甘立琴, 苏进昌, 谢岳, 等.曲流河储层隔夹层研究:以秦皇岛32-6油田为例.岩性油气藏, 2017, 29(6):128-134. GAN L Q, SU J C, XIE Y, et al. Interlayers of meandering river reservoir:a case from Qinhuangdao 32-6 oilfield. Lithologic Reservoirs, 2017, 29(6):128-134.
[12] 邹威, 姚约东, 王庆.底水油藏水平井水脊形态影响因素.油气地质与采收率, 2017, 24(5):70-77. ZOU W, YAO Y D, WANG Q. Study on influential factors of water cresting morphology in horizontal well of bottom water reservoirs. Petroleum Geology and Recovery Efficiency, 2017, 24(5):70-77.
[13] 安永生, 张宁, 张恒.水平井ICD控水完井一体化耦合数值模拟研究.中国海上油气, 2017, 29(2):109-113. AN Y S, ZHANG N, ZHANG H. Numerical simulation study on the coupling of horizontal wells with ICD water control completion. China Offshore Oil and Gas, 2017, 29(2):109-113.
[14] PERMADI P, GUSTIAWAN E, ABDASSAH D. Water cresting and oil recovery by horizontal wells in the presence of impermeable streaks SPE 35440, 1996.
[15] DOU H, GUAN C Z, LIAN S J. The experimental studies of physical simulation of bottom water reservoirs with barrier and permeable interbred on horizontal well SPE 55995, 1999.
[16] MODARESGHAZANI J, MOORE R, MEHTA S, et al. Investigation of the relative permeabilities in two-phase flow of heavy oil/water and three-phase flow of heavy oil/water/gas systems. Journal of Petroleum Science and Engineering, 2019, 172:681-689.
[17] 刘莉, 汪翔, 郑德温.用动态物理模拟实验研究夹层长度对底水锥进的影响. 西安石油大学学报(自然科学版), 2004, 19(1):34-37. LI L, WANG X, ZHENG D W. Study on the effect of interbed length on bottom-water coning by dynamic physical modeling experiments. Journal of Xi'an Shiyou University(Natural Science Edition), 2004, 19(1):34-37.
[18] 刘欣颖, 胡平.水平井开采含夹层底水油藏三维物理试验研究. 石油天然气学报, 2011, 33(8):129-133. LIU X Y, HU P. 3-D physical experiment on horizontal well production in bottom water reservoirs with interbeds. Journal of Oil and Gas Technology, 2011, 33(8):129-133.
[19] 刘佳, 程林松, 黄世军.底水油藏水平井开发物理模拟实验研究.石油钻探技术, 2013, 41(1):87-92. LIU J, CHENG L S, HUANG S J. Physical modeling and experiment for horizontal wells in bottom water reservoir. Petroleum Drilling Techniques, 2013, 41(1):87-92.
[20] 张伟, 曹仁义, 罗东红, 等.南海珠江口盆地海相砂岩油藏高倍数水驱驱替特征.油气地质与采收率, 2018, 25(2):64-71. ZHANG W, CAO R Y, LUO D H, et al. Displacement characteristics of high-multiple water drive in marine sandstone reservoirs in the Pearl River Mouth Basin,South China Sea. Petroleum Geology and Recovery Efficiency, 2018, 25(2):64-71.
[1] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[2] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[3] 向巧维, 李小平, 丁琳, 杜家元. 珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义[J]. 岩性油气藏, 2021, 33(2): 93-103.
[4] 吕文睿, 张峰, 纪友亮, 周勇, 罗妮娜, 张艺楼, 梁星如, 程煜宗. 饶阳凹陷大王庄地区沙一上亚段河口坝结构对油藏开发的影响[J]. 岩性油气藏, 2020, 32(4): 143-154.
[5] 罗泽, 谢明英, 梁杰, 涂志勇, 侯凯. 地震伪井速度点宏观校正方法与应用——以珠江口盆地M气田为例[J]. 岩性油气藏, 2020, 32(3): 115-121.
[6] 罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣. 一套针对高泥质疏松砂岩薄储层的识别技术——以珠江口盆地X油田为例[J]. 岩性油气藏, 2019, 31(6): 95-101.
[7] 杜贵超, 苏龙, 陈国俊, 张功成, 丁超, 曹青, 鲁岳鑫. 番禺低隆起珠海组砂岩碳酸盐胶结特征及其对储层物性的影响[J]. 岩性油气藏, 2019, 31(3): 10-19.
[8] 李文静, 王英民, 何敏, 陈维涛, 徐少华, 卓海腾. 珠江口盆地中中新世陆架边缘三角洲的类型及控制因素[J]. 岩性油气藏, 2018, 30(2): 58-66.
[9] 甘立琴, 苏进昌, 谢岳, 李超, 何康, 来又春. 曲流河储层隔夹层研究——以秦皇岛32-6油田为例[J]. 岩性油气藏, 2017, 29(6): 128-134.
[10] 刘超, 李云鹏, 张伟, 冯海潮, 王颍超. 渤海海域A油田夹层控制下的剩余油分布模式[J]. 岩性油气藏, 2017, 29(5): 148-154.
[11] 陈锋,朱筱敏,葛家旺,黎明,吴陈冰洁. 珠江口盆地陆丰南地区文昌组层序地层及沉积体系研究[J]. 岩性油气藏, 2016, 28(4): 67-77,94.
[12] 马勇新,雷 霄,张乔良,孟令强. 低渗透油藏有效渗透率计算新模型—— — 以珠江口盆地海相低渗透砂岩为例[J]. 岩性油气藏, 2016, 28(1): 117-122.
[13] 潘光超,周家雄,韩光明,朱沛苑,刘 峰. 中深层“甜点”储层地震预测方法探讨—— 以珠江口盆地西部文昌 A 凹陷为例[J]. 岩性油气藏, 2016, 28(1): 94-100.
[14] 熊 冉,杨 存,罗宪婴,乔占峰,曹 鹏. 地震沉积学在白云岩油藏隔夹层预测中的应用----以塔里木盆地英买 32 区块蓬莱坝组为例[J]. 岩性油气藏, 2015, 27(5): 116-121.
[15] 李 华,何幼斌,王英民,裴 羽 . 深水交互作用沉积研究进展----以南海北部珠江口盆地为例[J]. 岩性油气藏, 2015, 27(5): 218-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .