岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 118–129.doi: 10.12108/yxyqc.20220112

• 勘探技术 • 上一篇    下一篇

沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法

赵笑笑1,2, 闫建平1,2,3, 王敏4, 何贤2, 钟光海5, 王军4, 耿斌4, 胡钦红6, 李志鹏4   

  1. 1. 油气藏地质及开发工程国家重点实验室(西南石油大学), 成都 610500;
    2. 西南石油大学地球科学与技术学院, 成都 610500;
    3. 中国地质大学构造与油气资源教育部重点实验室, 武汉 430074;
    4. 中国石化胜利油田分公司勘探开发研究院, 山东东营 257015;
    5. 中国石油西南油气田分公司页岩气研究院, 成都 610500;
    6. 美国德克萨斯大学阿灵顿分校地球与环境科学系, 德克萨斯州阿灵顿 76019
  • 收稿日期:2021-05-12 修回日期:2021-07-14 发布日期:2022-01-21
  • 通讯作者: 闫建平(1980—),男,博士,教授,主要从事测井地质学、岩石物理等方面的教学与研究工作。Email:yanjp_tj@163.com。 E-mail:yanjp_tj@163.com
  • 作者简介:赵笑笑(1997-),女,西南石油大学在读硕士研究生,研究方向为测井地质学、页岩油气测井评价技术。地址:(610500)四川省成都市新都区西南石油大学地球科学与技术学院。Email:1844179815@qq.com
  • 基金资助:
    中国石油-西南石油大学创新联合体科技合作项目“川南深层与昭通中浅层海相页岩气规模效益开发关键技术研究”(编号:2020-CX020000)和胜利油田科技攻关项目“页岩油地质储量计算关键参数研究”(YKK2013)

Logging identification method of lacustrine shale interlayers of Shahejie Formation in Zhanhua Sag

ZHAO Xiaoxiao1,2, YAN Jianping1,2,3, WANG Min4, HE Xian2, ZHONG Guanghai5, WANG Jun4, GENG Bin4, HU Qinhong6, LI Zhipeng4   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China;
    4. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying 257015, Shandong, China;
    5. Research Institute of Shale Gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China;
    6. Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington 76019, TX, USA
  • Received:2021-05-12 Revised:2021-07-14 Published:2022-01-21

摘要: 为了研究沾化凹陷沙三段湖相页岩夹层与页岩油产能之间的关系,在分析岩心描述、薄片鉴定、X射线衍射、扫描电镜、压汞等资料的基础上,利用反褶积方法处理测井资料识别夹层类型。结果表明:①砂质夹层和灰质夹层的脆性矿物含量高,易形成裂缝。其中砂质夹层长英矿物和灰质夹层碳酸盐岩矿物的质量分数高达46.7%,57.95%;②夹层中发育异常压力缝、矿物收缩缝、层间缝,在砂质夹层中还发育构造缝。出现裂缝的夹层平均渗透率高达7.59 mD;③夹层主要发育微—纳米级孔隙,有粒间孔、溶蚀孔和晶间孔,孔隙连通性较好。粒间孔常见于砂质夹层。溶蚀孔常见于灰质夹层,大孔隙较多;④夹层测井曲线响应特征:砂质夹层和灰质夹层都表现为低自然伽马和高电阻率特征,砂质夹层具有自然伽马在高背景下低回返、三孔隙度曲线和深侧向电阻率向右偏移,灰质夹层的三孔隙度曲线呈明显向右“靠拢”。利用反褶积方法处理后的自然伽马、深侧向电阻率曲线进行重叠可快速识别夹层且分辨率更高、更直观,能够有效地识别湖相泥页岩夹层,为页岩油评价提供依据。

关键词: 页岩油, 砂质夹层, 灰质夹层, 测井识别, 反褶积, 曲线重叠法, 沙河街组, 沾化凹陷

Abstract: To study the relationship between lacustrine shale interlayer and shale oil productivity of the third member of Shahejie Formation in Zhanhua Sag,based on the analysis of core description,thin section identification,X-ray diffraction,scanning electron microscope and mercury injection,deconvolution method was used to process logging data to identify interlayer types.The results show that:(1) The content of brittle minerals in sandy interlayers and calcareous interlayers is high,which is easy to form fractures. The mass fraction of quartz-feldspar and calcite-dolomite is as high as 46.7% and 57.95% respectively.(2) Abnormal pressure fractures,mineral contraction fractures and interlayer fractures are developed in the interlayer,and structural fractures are also developed in the sandy interlayer. The average permeability of fractured interlayer is 7.59 mD.(3) The interlayers mainly develop micro and nano pores with good pore connectivity,including intergranular pores,dissolved pores and intergranular pores. Intergranular pores are shown in sandy interlayer. Dissolved pores are shown in calcareous interlayer,with more macropores.(4) The logging curve response characteristics of the interlayers are as following:both sandy interlayers and limestone interlayers are characterized by low natural gamma and high resistivity,sandy interlayer has low return under high natural gamma background,three-porosity curve and deep lateral resistivity shift to the right and three-porosity curve of limestone interlayer is obviously closed to the right. Overlapping the natural gamma and deep lateral resistivity curves processed by deconvolution method, it is quick to identify the interlayer with higher resolution and more intuitive,and effective to identify the lacustrine shale interlayer, which provides a basis for shale oil evaluation.

Key words: shale oil, sandy interlayer, limestone interlayer, log identification, deconvolution, log overlapping method, Shahejie Formation, Zhanhua Sag

中图分类号: 

  • P631
[1] 宋明水, 刘惠民, 王勇, 等. 济阳坳陷古近系页岩油富集规律认识与勘探实践. 石油勘探与开发, 2020, 47(2):225-235. SONG M S, LIU H M, WANG Y, et al. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 2020, 47(2):225-235.
[2] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价. 地学前缘, 2012, 19(5):322-331. ZHANG J C, LIN L M, LI Y X, et al. Classification and evaluation of shale oil. Earth Science Frontiers, 2012, 19(5):322-331.
[3] 王鸿升, 胡天跃. 渤海湾盆地沾化凹陷页岩油形成影响因素分析. 天然气地球科学, 2014, 25(增刊1):141-149. WANG H S, HU T Y. Analysis of influence factor of shale oil formation in Zhanhua Depression of Bohai Bay Basin. Natural Gas Geoscience, 2014, 25(Suppl 1):141-149.
[4] 朱德顺, 王勇, 朱德燕, 等. 渤南洼陷沙一段夹层型页岩油界定标准及富集主控因素. 油气地质与采收率, 2015, 22(5):15-20. ZHU D S, WANG Y, ZHU D Y, et al. Analysis on recognition criteria and enrichment factors of interlayer shale oil of Es1 in Bonan subsag. Petroleum Geology and Recovery Efficiency, 2015, 22(5):15-20.
[5] 张文正, 杨华, 杨伟伟, 等. 鄂尔多斯盆地延长组长7湖相页岩油地质特征评价. 地球化学, 2015, 44(5):505-515. ZHANG W Z, YANG H, YANG W W, et al. Assessment of geological characteristics of lacustrine shale oil reservoir in Chang 7 member of Yanchang Formation, Ordos Basin. Geochimica, 2015, 44(5):505-515.
[6] 宋国奇, 徐兴友, 李政, 等. 济阳坳陷古近系陆相页岩油产量的影响因素. 石油与天然气地质, 2015, 36(3):463-471. SONG G Q, XU X Y, LI Z, et al. Factors controlling oil production from Paleogene shale in Jiyang Depression. Oil & Gas Geology, 2015, 36(3):463-471.
[7] 朱德顺. 渤海湾盆地东营凹陷和沾化凹陷页岩油富集规律. 新疆石油地质, 2016, 37(3):270-274. ZHU D S. Accumulation pattern of shale oil in Dongying Sag and Zhanhua Sag, Bohai Bay Basin. Xinjiang Petroleum Geology, 2016, 37(3):270-274.
[8] 刘雅利, 刘鹏. 陆相富有机质泥页岩中夹层特征及其作用:以济阳坳陷为例. 油气地质与采收率, 2019, 26(5):1-9. LIU Y L, LIU P. Interlayer characteristics and their effect on continental facies organic-rich shale:A case study of Jiyang Depression. Petroleum Geology and Recovery Efficiency, 2019, 26(5):1-9.
[9] YAN J P, HE X, HU Q H, et al. Lower Es3 in Zhanhua Sag, Jiyang Depression:A case study for lithofacies classification in lacustrine mud shale. Applied Geophysics, 2018, 15(2):151-164.
[10] 王立东, 张明德, 吴清华, 等. 济阳坳陷区页岩气资源储存可能性浅析. 山东国土资源, 2016, 32(6):27-31. WANG L D, ZHANG M D, WU Q H, et al. Primary analysis on the possibility of shale gas resource storage in Jiyang Depression. Shandong Land and Resources, 2016, 32(6):27-31.
[11] 张春池, 彭文泉, 高兵艳, 等. 山东省页岩气有利勘探层系与资源评价. 油气地质与采收率, 2019, 26(2):7-13. ZHANG C C, PENG W Q, GAO B Y, et al. Favorable exploration strata and resource evaluation of shale gas in Shandong province. Petroleum Geology and Recovery Efficiency, 2019, 26(2):7-13.
[12] 张春池, 彭文泉, 胡小辉, 等. 沾化凹陷沙河街组页岩气成藏条件研究. 特种油气藏, 2019, 26(3):12-17. ZHANG C C, PENG W Q, HU X X, et al. Shale gas accumulation conditions of Shahejie Formation in Zhanhua Depression. Special Oil and Gas Reservoirs, 2019, 26(3):12-17.
[13] 孙焕泉. 济阳坳陷页岩油勘探实践与认识. 中国石油勘探, 2017, 22(4):1-14. SUN H Q. Exploration practice and cognitions of shale oil in Jiyang Depression. China Petroleum Exploration, 2017, 22(4):1-14.
[14] 谢玉洪, 罗小平, 王德英, 等. 渤海湾盆地渤中凹陷西次洼中生界古潜山油气成藏过程. 天然气工业, 2019, 39(5):15-24. XIE Y H, LUO X P, WANG D Y, et al. Hydrocarbon accumulation of composite-buried hill reservoirs in the western subsag of Bozhong Sag, Bohai Bay Basin. Natural Gas Industry, 2019, 39(5):15-24.
[15] 刘鹏. 不同体系域碎屑岩储集体成岩演化差异:以渤南洼陷沙三段为例. 油气地质与采收率, 2019, 26(2):60-67. LIU P. Diagenetic evolution difference of clastic reservoirs in different system tract:A case study of 3rd member of Shahejie Formation in Bonan Sag, Jiyang Depression. Petroleum Geology and Recovery Efficiency, 2019, 26(2):60-67.
[16] 闫建平, 言语, 彭军, 等. 湖相泥页岩天文地层旋回测井识别在沾化凹陷沙三下亚段的应用. 测井技术, 2017, 41(6):701-707. YAN J P, YAN Y, PENG J, et al. Log identification of astronomical cycle in lacustrine facies mud shale and its application in the lower 3rd member of Shahejie Formation in Zhanhua Sag. Well Logging Technology, 2017, 41(6):701-707.
[17] 李超, 朱筱敏, 朱世发, 等. 沾化凹陷罗家地区沙三下段泥页岩储层特征. 沉积学报, 2015, 33(4):795-808. LI C, ZHU X M, ZHU S F, et al. Shale reservoir characteristics of the lower 3th member of Shahejie Formation, Luojia area, Zhanhua Sag. Acta Sedimentologica Sinica, 2015, 33(4):795-808.
[18] NIE H K, HE Z L, LIU G X, et al. Genetic mechanism of highquality shale gas reservoirs in the Wufeng-Longmaxi formations in the Sichuan Basin. Natural Gas Industry B, 2021, 8(1):24-34.
[19] 郑荣才, 郭春利, 梁西文, 等. 四川盆地大安寨段非常规储层的储集空间类型与评价. 岩性油气藏, 2016, 28(1):16-29. ZHENG R C, GUO C L, LIANG X W, et al. Characteristics and evaluation of reservoir spaces of shale gas(oil)in Da'anzhai member of Ziliujing Formation in Sichuan Basin. Lithologic Reservoirs, 2016, 28(1):16-29.
[20] 陈登钱, 沈晓双, 崔俊, 等. 柴达木盆地英西地区深部混积岩储层特征及控制因素. 岩性油气藏, 2015, 27(5):211-217. CHEN D Q, SHEN X S, CUI J, et al. Reservoir characteristics and controlling factors of deep diamictite in Yingxi area, Qaidam Basin. Lithologic Reservoirs, 2015, 27(5):211-217.
[21] 张审琴, 李亚锋, 郭正权, 等. 英西湖相碳酸盐岩储层测井解释新方法. 测井技术, 2019, 43(6):620-625. ZHANG S Q, LI Y F, GUO Z Q, et al. Innovative log interpretation methods for lacustrine carbonate reservoirs in Yingxi block. Well Logging Technology, 2019, 43(6):620-625.
[22] 刘毅, 陆正元, 戚明辉, 等. 渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征. 石油实验地质, 2017, 39(2):180-185. LIU Y, LU Z Y, QI M H, et al. Microscopic characteristic of shale oil reservoirs in Shahejie Formation in Zhanhua Sag, Bohai Bay Basin. Petroleum Geology and Experiment, 2017, 39(2):180-185.
[23] 孔星星, 肖佃师, 蒋恕, 等. 联合高压压汞和核磁共振分类评价致密砂岩储层:以鄂尔多斯盆地临兴区块为例. 天然气工业, 2020, 40(3):38-47. KONG X X, XIAO D S, JIANG S, et al. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs:A case study of the Linxing block in the Ordos Basin. Natural Gas Industry, 2020, 40(3):38-47.
[24] 任晓霞, 李爱芬, 王永政, 等. 致密砂岩储层孔隙结构及其对渗流的影响:以鄂尔多斯盆地马岭油田长8储层为例. 石油与天然气地质, 2015, 36(5):774-779. REN X X, LI A F, WANG Y Z, et al. Pore structure of tight sand reservoir and its influence on percolation:Taking the Chang 8 reservoir in Maling Oilfield in Ordos Basin as an example. Oil & Gas Geology, 2015, 36(5):774-779.
[25] 解伟. 西峰庆阳区长8储层微观孔隙结构及渗流特征研究. 西安:西北大学, 2008. XIE W. A study on micro-pore structure and infiltrating mechanism of Chang-8 reservoir in Qingyang area Xifeng Oilfield. Xi'an:Northwest University, 2008.
[26] 苗钱友, 朱筱敏, 郭洪明, 等. 滨里海盆地东缘中区块石炭系碳酸盐岩储层测井评价. 测井技术, 2014, 38(2):196-200. MIAO Q Y, ZHU X M, GUO H M, et al. Log evaluation of complex carbonate reservoirs in center block of the eastern margin of Pre-Caspian Basin. Well Logging Technology, 2014, 38(2):196-200.
[27] 张涛, 林承焰, 张宪国. 利用测井曲线反褶积方法提高薄层识别能力. 石油勘探与开发, 2010, 37(5):579-582. ZHANG T, LIN C Y, ZHANG X G. Improve thin beds discrimination using the log curves deconvolution method. Petroleum Exploration and Development, 2010, 37(5):579-582.
[28] 刘冬冬, 杨东旭, 张子亚, 等. 基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2019, 31(3):76-85. LIU D D, YANG D X, ZHANG Z Y, et al. Fracture identification for tight reservoirs by conventional and imaging logging:A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. Lithologic Reservoirs, 2019, 31(3):76-85.
[29] 牛超群, 安丰全, 牛华, 等. 测井曲线高分辨率处理. 北京:地质出版社, 1999:6-12. NIU C Q, AN F Q, NIU H, et al. High-resolution processing of log curves. Beijing:Geological Publishing House, 1999:6-12.
[1] 李梦莹, 朱如凯, 胡素云. 海外陆相页岩油地质特征与资源潜力[J]. 岩性油气藏, 2022, 34(1): 163-174.
[2] 王静怡, 周志军, 魏华彬, 崔春雪. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154.
[3] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[4] 杜金玲, 林鹤, 纪拥军, 江洪, 许文莉, 伍顺伟. 地震与微地震融合技术在页岩油压后评估中的应用[J]. 岩性油气藏, 2021, 33(2): 127-134.
[5] 刘博, 徐刚, 纪拥军, 魏路路, 梁雪莉, 何金玉. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
[6] 彭军, 许天宇, 于乐丹. 东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 1-12.
[7] 张道伟, 薛建勤, 伍坤宇, 陈晓冬, 王牧, 张庆辉, 郭宁. 柴达木盆地英西地区页岩油储层特征及有利区优选[J]. 岩性油气藏, 2020, 32(4): 1-11.
[8] 薛辉, 韩春元, 肖博雅, 王芳, 李玲. 蠡县斜坡高阳地区沙一下亚段浅水三角洲前缘沉积特征及模式[J]. 岩性油气藏, 2020, 32(4): 69-80.
[9] 任梦怡, 江青春, 刘震, 卢朝进. 南堡凹陷柳赞地区沙三段层序结构及其构造响应[J]. 岩性油气藏, 2020, 32(3): 93-103.
[10] 赵岩, 毛宁波. 基于零偏移距VSP的时变子波反褶积方法[J]. 岩性油气藏, 2019, 31(6): 88-94.
[11] 李百强, 张小莉, 王起琮, 郭彬程, 郭艳琴, 尚晓庆, 程浩, 卢俊辉, 赵希. 低渗—特低渗白云岩储层成岩相分析及测井识别——以伊陕斜坡马五段为例[J]. 岩性油气藏, 2019, 31(5): 70-83.
[12] 靳军, 王剑, 杨召, 刘金, 季汉成, 贾海波, 张晓刚. 准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别[J]. 岩性油气藏, 2018, 30(2): 85-92.
[13] 车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1): 121-132.
[14] 李延丽, 王建功, 石亚军, 张平, 徐丽. 柴达木盆地西部盐湖相有效烃源岩测井识别[J]. 岩性油气藏, 2017, 29(6): 69-75.
[15] 郭秋麟, 武娜, 任洪佳, 陈宁生, 谌卓恒. 中低成熟阶段页岩有机质孔预测模型探讨[J]. 岩性油气藏, 2017, 29(6): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[2] 杜海峰, 于兴河. 松辽盆地高台子地区扶杨油层组岩心岩相及构形要素分析[J]. 岩性油气藏, 2007, 19(2): 35 -40 .
[3] 卢德根,刘林玉,刘秀蝉,李文斌. 鄂尔多斯盆地镇泾区块长81 亚段成岩相研究[J]. 岩性油气藏, 2010, 22(1): 82 -86 .
[4] 王愫. 双反射偏移(DWM) 技术介绍及应用[J]. 岩性油气藏, 2008, 20(2): 78 -82 .
[5] 杜乐天. 从新世纪独联体有关地球排气和油气成因理论进展所得到的启示[J]. 岩性油气藏, 2009, 21(4): 1 -9 .
[6] 降栓奇,陈彦君,赵志刚,高双,李红恩,李晓红. 二连盆地潜山成藏条件及油藏类型[J]. 岩性油气藏, 2009, 21(4): 22 -27 .
[7] 王威,李臻,田敏,周锦程,李凝. 岩性-地层油气藏勘探方法技术研究现状及进展[J]. 岩性油气藏, 2009, 21(2): 121 -125 .
[8] 李在光,陈启林,吕锡敏,杨占龙,黄云峰,吴青鹏. 吐哈盆地北部山前带石油地质条件及勘探方向[J]. 岩性油气藏, 2009, 21(3): 29 -34 .
[9] 陈沫. 横向各向同性介质地震波场逆时偏移[J]. 岩性油气藏, 2009, 21(4): 78 -81 .
[10] 陆燕妮,邓勇,陈刚. 塔河油田缝洞型底水油藏临界产量计算研究[J]. 岩性油气藏, 2009, 21(4): 108 -110 .