岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 134140.doi: 10.12108/yxyqc.20200215
宋宣毅, 刘月田, 马晶, 王俊强, 孔祥明, 任兴南
SONG Xuanyi, LIU Yuetian, MA Jing, WANG Junqiang, KONG Xiangming, REN Xingnan
摘要: 针对常规的线性回归以及经验公式等油井初期产能预测方法应用范围有限、预测误差较大,并且难以表征初产在多因素影响下的非线性变化规律等问题,提出了基于机器学习算法的产能预测方法。以某特低渗油田为例,从地质、开发和工程3个方面,选择了影响初期产能的10种因素,采用皮尔逊相关关系分析了各因素之间的线性相关性,使用随机森林方法确定了初期产能的主控因素,首次采用灰狼算法(GWO)优化的支持向量机(SVM)建立了油井初期产能的预测模型。结果表明:特低渗油田初期产能的主控因素为:压裂加砂量,射孔段厚度,初始含水饱和度,油层有效厚度和加砂强度;与多元线性回归模型和网格寻优的支持向量机模型相比,灰狼算法优化的支持向量机初期产能预测模型精度高而且运算速度快。研究结果可为油井初期产能评估提供参考。
中图分类号:
[1] 刘海龙, 刘传喜, 孙建芳, 等.致密砂岩油藏部分射开压裂直井产能分析.辽宁石油化工大学学报, 2018, 38(1):37-43. LIU H L, LIU C X, SUN J F, et al. The productivity analysis of vertical well with partial penetration fracture in tight sandstone reservoir. Journal of Liaoning Shihua University, 2018, 38(1):37-43. [2] 陈明强, 蒲春生, 赵继勇, 等.变形介质低渗透油藏油井真实产能计算与分析.西安石油大学学报(自然科学版), 2006, 21(2):18-22. CHEN M Q, PU C S, ZHAO J Y, et al. Calculation and analysis of the true productivity of a well of low permeable reservoirs of a deformation medium. Journal of Xi'an Shiyou University(Natural Science Edition).2006, 21(2):18-22. [3] 任俊杰, 郭平, 汪周华, 等.非线性渗流条件的低渗油藏产能计算方法. 西安石油大学学报(自然科学版), 2013, 28(1):57-60. REN J J, GUO P, WANG Z H, et al. A new method for productivity evaluation of low permeability reservoirs with nonlinear seepage characteristics. Journal of Xi'an Shiyou University (Natural Science Edition), 2013, 28(1):57-60. [4] 姬靖皓, 席家辉, 曾凤凰, 等.致密油藏分段多簇压裂水平井非稳态产能模型.岩性油气藏, 2019, 31(4):157-164. JI J H, XI J H, ZENG F H, et al. Unsteady productivity model of segmented multi-cluster fractured horizontal wells in tight oil reservoir. Lithologic Reservoirs, 2019, 31(4):157-164. [5] 李小龙, 许华儒, 刘晓强, 等.径向井压裂裂缝形态及热采产能研究.岩性油气藏, 2017, 29(6):154-160. LI X L, XU H R, LIU X Q, et al. Fracture morphology and production performance of radial well fracturing. Lithologic Reservoirs, 2017, 29(6) 154-160. [6] 安永生.复杂井产能动态预测数值模拟研究.北京:中国石油大学(北京), 2008. AN Y S. Numerical simulation study on dynamic prediction of complex well productivity. Beijing:China University of Petroleum(Beijing), 2008. [7] CAO Q, BANERJEE R, GUPTA S, et al. Data driven production forecasting using machine learning. SPE180984, 2016. [8] 潘有军, 荆文波, 徐赢, 等.火山岩油藏水平井体积压裂产能预测研究.岩性油气藏, 2018, 30(3):159-164. PAN Y J, JING W B, XU Y, et al. Productivity prediction of horizontal wells by volume fracturing in volcanic reservoirs. Lithologic Reservoirs, 2018, 30(3):159-164. [9] 田冷, 何顺利, 顾岱鸿, 等.改进BP神经网络模型在长庆气田产能预测中的应用.石油天然气学报, 2008, 30(5):106-109. TIAN L, HE S L, GU D H, et al. Application of neural network technique for productivity evaluation in Changqing gas field. Journal of Oil and Gas Technology, 2008, 30(5):106-109. [10] 王威.致密油藏水平井体积压裂初期产能预测.新疆石油地质, 2016, 37(5):575-579. WANG W. Forecast of initial horizontal well productivity in tight reservoirs by volumetric fracturing process. Xinjiang Petroleum Geology, 2016, 37(5):575-579. [11] 赵传峰, 姜汉桥, 郭新华.支持向量机在小样本预测中的应用. 油气地面工程, 2009, 28(2):21-23. ZHAO C F, JIANG H Q, GUO X H. Application of support vector machine in small sample prediction. Oil and gas ground engineering, 2009, 28(2):21-23. [12] 张志英, 姜汉桥, 郭虎, 等.基于支持向量机的水平井产能预测方法.大庆石油地质与开发, 2010, 29(1):78-80. ZHANG Z Y, JIANG H Q, GUO H, et al. Horizontal well productivity prediction based on SVM. Petroleum Geology and Oilfield Development in Daqing, 2010, 29(1):78-80. [13] BIAN X Q, HUANG J H, WANG Y, et al. Prediction of wax disappearance temperature by intelligent models. Energy & Fuels, 2019, 33(4):2934-2949. [14] 王建.多元回归法在特低渗透油藏初期产量预测中的应用:以坪北油田为例.江汉石油科技, 2017(4):32-39. WANG J. Application of multiple regression method in early production prediction of ultra-low permeability reservoir. Jianghan Petroleum Technology, 2017(4):32-39. [15] 翁永春, 祝一帆, 孟浪, 等. 基于多历史覆冰过程的输电线路覆冰增长预测. 三峡大学学报(自然科学版), 2019, 41(1):75-79. WENG Y C, ZHU Y F, MENG L, et al. Prediction of icing growth of transmission line based on multi-history icing process. Journal of China Three Gorges University(Natural Science Edition), 2019, 41(1):75-79. [16] 姚登举, 杨静, 詹晓娟.基于随机森林的特征选择算法.吉林大学学报(工学版), 2014, 44(1):137-141. YAO D J, YANG J, ZHAN X J. Feature selection algorithm based on random forest. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1):137-141. [17] VAPNIK V, LEVIN E, CUN Y L. Measuring the VC-Dimension of a learning machine. Neural Computation, 1994, 6(5):851-876. [18] 郭振洲, 刘然, 拱长青, 等.基于灰狼算法的改进研究.计算机应用研究, 2017, 34(12):89-92. GUO Z Z, LIU R, GONG C Q, et al. Study on improvement of gray wolf algorithm. Application Research of Computers, 2017, 34(12):89-92. [19] HELALEH, A H, ALIZADEH M. Performance prediction model of Miscible Surfactant-CO2 displacement in porous media using support vector machine regression with parameters selected by Ant colony optimization. Journal of Natural Gas Science and Engineering, 2016, 30(1):388-404. [20] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69(3):46-61. |
[1] | 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22. |
[2] | 桂金咏, 李胜军, 高建虎, 刘炳杨, 郭欣. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏, 2024, 36(2): 65-75. |
[3] | 杨午阳, 魏新建, 李海山. 智能物探技术的过去、现在与未来[J]. 岩性油气藏, 2024, 36(2): 170-188. |
[4] | 郭海峰, 肖坤叶, 程晓东, 杜业波, 杜旭东, 倪国辉, 李贤兵, 计然. 乍得Bongor盆地花岗岩潜山裂缝型储层有效渗透率计算方法[J]. 岩性油气藏, 2023, 35(6): 117-126. |
[5] | 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158. |
[6] | 许鑫, 杨午阳, 张凯, 魏新建, 张向阳, 李海山. 三维初至波旅行时层析速度反演算法优化[J]. 岩性油气藏, 2023, 35(4): 79-89. |
[7] | 何贤, 闫建平, 王敏, 王军, 耿斌, 李志鹏, 钟光海, 张瑞湘. 低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例[J]. 岩性油气藏, 2022, 34(1): 106-117. |
[8] | 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128. |
[9] | 孙予舒, 黄芸, 梁婷, 季汉成, 向鹏飞, 徐新蓉. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别[J]. 岩性油气藏, 2020, 32(4): 98-106. |
[10] | 何健, 武刚, 聂文亮, 刘松鸣, 黄伟. 基于近似支持向量机的裂缝分类方法[J]. 岩性油气藏, 2020, 32(2): 115-121. |
[11] | 潘有军, 荆文波, 徐赢, 赵嗣君, 李继成, 陶登海. 火山岩油藏水平井体积压裂产能预测研究[J]. 岩性油气藏, 2018, 30(3): 159-164. |
[12] | 陈明强, 王宁, 张阳, 任龙. 渭北油田浅层油藏产能预测方法[J]. 岩性油气藏, 2017, 29(5): 134-139. |
[13] | 易超,丁晓琪,葛鹏莉,郭佳. 利用测井资料对镇泾油田长8 油藏进行产能预测[J]. 岩性油气藏, 2010, 22(4): 104-108. |
[14] | 李联新,胡红,罗泽松. 川东高峰场构造长兴组生物礁储层测井评价[J]. 岩性油气藏, 2008, 20(4): 118-122. |
|