岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 141–148.doi: 10.12108/yxyqc.20200216

• 油气田开发 • 上一篇    下一篇

强底水稠油油藏水平井三维水驱物理模拟实验

杜旭林1, 戴宗2, 辛晶1, 李海龙2, 曹仁义1, 罗东红2   

  1. 1. 中国石油大学 (北京)石油工程学院, 北京 102249;
    2. 中海石油 (中国) 有限公司深圳分公司, 广东 深圳 518067
  • 收稿日期:2019-06-11 修回日期:2019-08-14 出版日期:2020-03-21 发布日期:2020-01-19
  • 第一作者:杜旭林(1992-),男,中国石油大学(北京)在读博士研究生,研究方向为渗流力学与油气藏数值模拟。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)石油工程学院。Email:duxulin_cup@foxmail.com。
  • 基金资助:
    国家油气重大专项“海上稠油高效开发新技术”(编号:2016ZX05025-004-002)和中国海洋石油科技重大项目“双特高海相砂岩油藏精细描述及剩余油定量预测技术”(编号:CNOOC-KJ 135 ZDXM 22 LTD 02 SZ 2016)资助

Three-dimensional water flooding physical simulation experiment of horizontal well in heavy oil reservoir with strong bottom water

DU Xulin1, DAI Zong2, XIN Jing1, LI Hailong2, CAO Renyi1, LUO Donghong2   

  1. 1. College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Shenzhen Branch Company, CNOOC, Shenzhen 518067, Guangdong, China
  • Received:2019-06-11 Revised:2019-08-14 Online:2020-03-21 Published:2020-01-19

摘要: 珠江口盆地海相砂岩稠油油藏底水活跃,夹层分布复杂,开发难度较大,现有的常规实验规范无法准确地描述此类油藏的波及规律。基于南海东部X稠油油藏特征,设计了水平井三维水驱物理模拟实验,抽提出原油黏度和夹层分布范围作为影响水驱开发效果的主控因素,分析了强底水稠油油藏水驱开发中的水脊形态与波及规律。结果表明:稠油油藏水脊变化过程为局部锥进—局部见水—局部上托—围绕见水点拓展;稠油油藏水驱存在明显的油水过渡带,在开发后期波及范围增大有限,可采用大排量提液措施,重点挖潜在波及区油水过渡带中的剩余油;稠油油藏水驱应关注水平井沿程非均质性;对于含夹层稠油油藏,小范围夹层底部剩余油较少,大范围夹层易发生底水绕流形成次生边水,沿井筒方向波及范围增大幅度较大,在夹层下部残存大量剩余油,表现为“屋檐油”。该成果可为强底水稠油油藏治水防水及剩余油挖潜提供方案。

关键词: 强底水稠油油藏, 三维水驱实验, 夹层, 水脊形态, 波及规律, 珠江口盆地

Abstract: The marine sandstone heavy oil reservoirs in the Pearl River Mouth Basin in the South China Sea are characterized by strong energy of bottom water,non-uniformed distribution of interlayers,and difficult development. Conventional experimental standards barely reveal reservoir sweep feature under high-intensity water flooding. A three-dimensional water flooding physical simulation experiment of horizontal well was designed based on the characteristics of the heavy oil reservoir named X in Pearl River Mouth Basin. The oil viscosity and interlayer distribution range were proposed as the main controlling factors affecting water flooding effect, and the characteristics of water cresting and sweep feature in water flooding development of heavy oil reservoirs with strong bottom water were analyzed. The results show that the changing process of water cresting in heavy oil reservoir is local coning-local water breakthrough-local upper support-expansion around water breakthrough point. There exists obvious oil-water transitional zone in heavy oil reservoir water flooding, and the sweep region is limited in the late stage of development, so large displacement measures can be used. The remaining oil in the oil-water transitional zone of flood sweep zone is a potential tapping target. The problem of heterogeneity along horizontal wells should be focused on the development of heavy oil reservoirs water flooding. For heavy oil reservoirs with interlayer, there is a small amount of residual oil at the bottom of the small range interlayer. Since the secondary edge water is easily formed when the bottom water flows around the large interlayer so that the sweep region along the wellbore direction increases greatly, and there is a large amount of residual oil at the bottom of the interlayer called "eaves oil". This study can provide research direction for waterproofing and tapping potential of remaining oil of heavy oil reservoirs with strong bottom water.

Key words: heavy oil reservoirs with strong bottom water, three-dimensional water flooding experiment, interlayer, water cresting, sweep feature, Pearl River Mouth Basin

中图分类号: 

  • TE345
[1] 周守为.海上油田高效开发技术探索与实践.中国工程科学, 2009, 11(10):55-60. ZHOU S W. Exploration and practice of offshore oil field effective development technology. Strategic Study of CAE, 2009, 11(10):55-60.
[2] 李林, 罗东红, 陶彬, 等.番禺油田薄层边底水稠油油藏水平井含水率上升特征. 油气地质与采收率, 2016, 23(3):106-110. LI L, LUO D H, TAO B, et al. Water cut rising performance of horizontal wells in thin-bed heavy oil reservoir with edge-bottom water in Panyu Oilfield. Petroleum Geology and Recovery Efficiency, 2016, 23(3):106-110.
[3] 郑建军, 李国良, 王庆龙, 等.稠油底水油藏不同井型开发特征分析及应用.石化技术, 2018,(7):12-13. ZHENG J J, LI G L, WANG Q L,et al. Production characteristic analysis and application of different well patterns in heavy oil reservoir with bottom water. Petrochemical Industry Technology, 2018,(7):12-13.
[4] 欧阳雨薇, 胡勇, 张运来, 等.低幅底水稠油油藏水平井含水率上升规律.新疆石油地质, 2017, 38(5):607-610. OUYANG Y W, HU Y, ZHANG Y L, et al. Water cut rising law of low-amplitude heavy oil reservoirs with bottom water in horizontal wells. Xinjiang Petroleum Geology, 2017, 38(5):607-610.
[5] 谢明英, 刘伟新, 戴宗, 等.海相强水驱疏松砂岩稠油薄油藏高效开发实践.中外能源, 2019, 24(6):54-59. XIE M Y, LIU W X, DAI Z, et al. Practice of efficient development in marine strong-water flooding loose sandstone heavy oil thin reservoirs. Sino-global Energy, 2019, 24(6):54-59.
[6] 张运来, 廖新武, 胡勇, 等.海上稠油油田高含水期开发模式研究.岩性油气藏, 2018, 30(4):120-126. ZHANG Y L, LIAO X W, HU Y, et al. Development models for offshore heavy oil field in high water cut stage. Lithologic Reservoirs, 2018, 30(4):120-126.
[7] 沈非, 程林松, 黄世军, 等.基于流管法的普通稠油水驱波及系数计算方法.石油钻采工艺, 2016, 38(5):645-649. SHEN F, CHENG L S, HUANG S J, et al. Calculation of sweep efficiency for water flooding development of conventional heavy oil using the stream-tube method. Oil Drilling & Production Technology, 2016, 38(5):645-649.
[8] 刘翀, 范子菲, 许安著, 等.稠油油藏反九点井网非活塞水驱平面波及系数计算方法. 石油钻采工艺, 2018, 40(2):228-233. LIU C, FAN Z F, XU A Z, et al. A calculation method for the areal sweep efficiency of heavy oil reservoirs by non-piston like waterflood in inverted nine-spot pattern. Oil Drilling & Production Technology, 2018, 40(2):228-233.
[9] 张吉磊, 罗宪波, 张运来, 等.提高稠油底水油藏转注井注水效率研究.岩性油气藏, 2019, 31(4):141-148. ZHANG J L, LUO X B, ZHANG Y L, et al. Improving water injection efficiency of transfer injection well in heavy oil bottom water reservoir. Lithologic Reservoirs, 2019, 31(4):141-148.
[10] 黄世军, 宋倩兰, 程林松, 等.底水稠油油藏单井条件下隔夹层参数研究.西南石油大学学报(自然科学版), 2018, 40(1):131-139. HUANG S J, SONG Q L, CHENG L S, et al. Study on interlayer parameters of bottom water heavy oil reservoir under singlewell condition. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(1):131-139.
[11] 甘立琴, 苏进昌, 谢岳, 等.曲流河储层隔夹层研究:以秦皇岛32-6油田为例.岩性油气藏, 2017, 29(6):128-134. GAN L Q, SU J C, XIE Y, et al. Interlayers of meandering river reservoir:a case from Qinhuangdao 32-6 oilfield. Lithologic Reservoirs, 2017, 29(6):128-134.
[12] 邹威, 姚约东, 王庆.底水油藏水平井水脊形态影响因素.油气地质与采收率, 2017, 24(5):70-77. ZOU W, YAO Y D, WANG Q. Study on influential factors of water cresting morphology in horizontal well of bottom water reservoirs. Petroleum Geology and Recovery Efficiency, 2017, 24(5):70-77.
[13] 安永生, 张宁, 张恒.水平井ICD控水完井一体化耦合数值模拟研究.中国海上油气, 2017, 29(2):109-113. AN Y S, ZHANG N, ZHANG H. Numerical simulation study on the coupling of horizontal wells with ICD water control completion. China Offshore Oil and Gas, 2017, 29(2):109-113.
[14] PERMADI P, GUSTIAWAN E, ABDASSAH D. Water cresting and oil recovery by horizontal wells in the presence of impermeable streaks SPE 35440, 1996.
[15] DOU H, GUAN C Z, LIAN S J. The experimental studies of physical simulation of bottom water reservoirs with barrier and permeable interbred on horizontal well SPE 55995, 1999.
[16] MODARESGHAZANI J, MOORE R, MEHTA S, et al. Investigation of the relative permeabilities in two-phase flow of heavy oil/water and three-phase flow of heavy oil/water/gas systems. Journal of Petroleum Science and Engineering, 2019, 172:681-689.
[17] 刘莉, 汪翔, 郑德温.用动态物理模拟实验研究夹层长度对底水锥进的影响. 西安石油大学学报(自然科学版), 2004, 19(1):34-37. LI L, WANG X, ZHENG D W. Study on the effect of interbed length on bottom-water coning by dynamic physical modeling experiments. Journal of Xi'an Shiyou University(Natural Science Edition), 2004, 19(1):34-37.
[18] 刘欣颖, 胡平.水平井开采含夹层底水油藏三维物理试验研究. 石油天然气学报, 2011, 33(8):129-133. LIU X Y, HU P. 3-D physical experiment on horizontal well production in bottom water reservoirs with interbeds. Journal of Oil and Gas Technology, 2011, 33(8):129-133.
[19] 刘佳, 程林松, 黄世军.底水油藏水平井开发物理模拟实验研究.石油钻探技术, 2013, 41(1):87-92. LIU J, CHENG L S, HUANG S J. Physical modeling and experiment for horizontal wells in bottom water reservoir. Petroleum Drilling Techniques, 2013, 41(1):87-92.
[20] 张伟, 曹仁义, 罗东红, 等.南海珠江口盆地海相砂岩油藏高倍数水驱驱替特征.油气地质与采收率, 2018, 25(2):64-71. ZHANG W, CAO R Y, LUO D H, et al. Displacement characteristics of high-multiple water drive in marine sandstone reservoirs in the Pearl River Mouth Basin,South China Sea. Petroleum Geology and Recovery Efficiency, 2018, 25(2):64-71.
[1] 何雁兵, 肖张波, 郑仰帝, 刘君毅, 易浩, 赵庆, 张月霞, 贺勇. 珠江口盆地陆丰13洼转换带中生界陆丰7-9潜山成藏特征[J]. 岩性油气藏, 2023, 35(3): 18-28.
[2] 黄军立, 张伟, 刘力辉, 蔡国富, 曾有良, 孟庆友, 刘浩. 珠江口盆地番禺4洼古近系文昌组三元地震构形解释技术[J]. 岩性油气藏, 2023, 35(2): 103-112.
[3] 贺勇, 邱欣卫, 雷永昌, 谢世文, 肖张波, 李敏. 珠江口盆地陆丰13东洼新生代构造演化与油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 74-82.
[4] 张卫卫, 刘军, 刘力辉, 张晓钊, 白海军, 杨登锋. 珠江口盆地番禺4洼古近系文昌组岩性预测技术及应用[J]. 岩性油气藏, 2022, 34(6): 118-125.
[5] 李承泽, 陈国俊, 田兵, 袁晓宇, 孙瑞, 苏龙. 珠江口盆地深层高温高压下的水岩作用[J]. 岩性油气藏, 2022, 34(4): 141-149.
[6] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[7] 赵笑笑, 闫建平, 王敏, 何贤, 钟光海, 王军, 耿斌, 胡钦红, 李志鹏. 沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法[J]. 岩性油气藏, 2022, 34(1): 118-129.
[8] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[9] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[10] 向巧维, 李小平, 丁琳, 杜家元. 珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义[J]. 岩性油气藏, 2021, 33(2): 93-103.
[11] 吕文睿, 张峰, 纪友亮, 周勇, 罗妮娜, 张艺楼, 梁星如, 程煜宗. 饶阳凹陷大王庄地区沙一上亚段河口坝结构对油藏开发的影响[J]. 岩性油气藏, 2020, 32(4): 143-154.
[12] 罗泽, 谢明英, 梁杰, 涂志勇, 侯凯. 地震伪井速度点宏观校正方法与应用——以珠江口盆地M气田为例[J]. 岩性油气藏, 2020, 32(3): 115-121.
[13] 罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣. 一套针对高泥质疏松砂岩薄储层的识别技术——以珠江口盆地X油田为例[J]. 岩性油气藏, 2019, 31(6): 95-101.
[14] 杜贵超, 苏龙, 陈国俊, 张功成, 丁超, 曹青, 鲁岳鑫. 番禺低隆起珠海组砂岩碳酸盐胶结特征及其对储层物性的影响[J]. 岩性油气藏, 2019, 31(3): 10-19.
[15] 李文静, 王英民, 何敏, 陈维涛, 徐少华, 卓海腾. 珠江口盆地中中新世陆架边缘三角洲的类型及控制因素[J]. 岩性油气藏, 2018, 30(2): 58-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .