岩性油气藏 ›› 2022, Vol. 34 ›› Issue (3): 131–141.doi: 10.12108/yxyqc.20220312

• 地质勘探 • 上一篇    下一篇

A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例

张威1,2, 李磊1,2, 邱欣卫3, 龚广传1,2, 程琳燕1,2, 高毅凡1,2, 杨志鹏1,2, 杨蕾4   

  1. 1. 西安石油大学 地球科学与工程学院, 西安 710065;
    2. 陕西省油气成藏地质学重点实验室, 西安 710065;
    3. 中海石油 (中国) 有限公司深圳分公司, 深圳 518000;
    4. 中国石油华北油田分公司勘探开发研究院, 河北 任丘 062550
  • 收稿日期:2021-08-13 修回日期:2021-10-21 出版日期:2022-05-01 发布日期:2022-05-12
  • 通讯作者: 李磊(1979-),男,博士,教授,主要从事地震地质综合解释及海洋沉积方面的教学和研究工作。Email:lilei@xsyu.edu.cn。
  • 作者简介:张威(1998-),男,西安石油大学在读硕士研究生,研究方向为地震解释及深水沉积。地址:(710065)陕西省西安市雁塔区电子二路东段18号。Email:zh_xaw@163.com
  • 基金资助:
    国家自然科学基金项目“深水重力流流态转化研究”(编号:41302147)与“研究生创新与实践能力培养计划”(编号:YCS21112049)联合资助

A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin

ZHANG Wei1,2, LI Lei1,2, QIU Xinwei3, GONG Guangchuan1,2, CHENG Linyan1,2, GAO Yifan1,2, YANG Zhipeng1,2, YANG Lei4   

  1. 1. School of Earth Sciences and Engineering, Xi' an Shiyou University, Xi' an 710065, China;
    2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi' an 710065, China;
    3. Shenzhen Branch of CNOOC China Limited, Shenzhen 518000, China;
    4. Research Institute of Exploration and Development, PetroChina Huabei Oilfield Company, Renqiu 062550, Hebei, China
  • Received:2021-08-13 Revised:2021-10-21 Online:2022-05-01 Published:2022-05-12

摘要: 湖盆可容空间与沉积物供给的比值(A/S)与三角洲沉积地层的层序结构及其在剖面上的叠置样式存在重要关联。通过高分辨率三维地震资料、钻测井资料,基于层序地层学、沉积学理论与沉积数值模拟技术,建立了珠江口盆地陆丰22洼古近系文昌组的等时地层格架,并结合沉积数值模拟技术探索了A/S对断陷湖盆三角洲时空演化的控制作用。研究结果表明:①陆丰22洼文昌组可划分为6个三级层序,自下而上分别为SQ1,SQ2,SQ3,SQ4和SQ5+6,发育了杂乱前积型、下超前积型、斜交前积型、叠瓦前积型等4类三角洲沉积体系;②文昌组SQ3和SQ4层序沉积体系具有明显差异。SQ3层序沉积期,A/S大于1,湖盆三角洲多为近源沉积,洼陷内部发育大面积半深湖—深湖沉积;SQ4层序沉积期,A/S小于等于1,三角洲发育规模扩大,向湖盆中心推进,洼陷内部广泛发育滨浅湖沉积;③选择研究区文昌组SQ3和SQ4层序开展三角洲沉积体系数值模拟,在软件中设置可容空间、沉积物供应和搬运方式等3个主要参数,模拟结果与实际地质认识较一致,进一步明确了研究区砂体的空间分布。

关键词: 可容空间, 沉积物供给, 断陷湖盆三角洲, 数值模拟, 文昌组, 古近系, 陆丰22洼, 珠江口盆地

Abstract: The ratio of accommodation to sediment supply(A/S)of lacustrine basin shows a strong correlation with sequence structure and the stacking pattern of deltas on profile. By using high-resolution 3D seismic data and logging data,based on sequence stratigraphy,sedimentology theory and sedimentary numerical simulation technology,the isochronous stratigraphic framework of Paleogene Wenchang Formation in Lufeng 22 subsag of Pearl River Mouth Basin was established. Combined with sedimentary numerical simulation technology,the control effects of A/S on the spatiotemporal evolution of deltas in rifted lacustrine basin were explored. The results show that: (1)Wenchang Formation in Lufeng 22 subsag can be divided into six third-order sequences,including SQ1,SQ2,SQ3,SQ4 and SQ5+6 from bottom to top. Four types of delta systems are identified in Wenchang Formation in the study area,including chaotic foreset,downlap foreset,oblique foreset and imbricated foreset. (2)There are obvious differences between SQ3 and SQ4 sequence sedimentary systems of Wenchang Formation. During the SQ3 period,the A/S was greater than 1,sediments deposited in the lacustrine basin deltas mostly came from near-source,and large area of semi-deep to deep lacustrine deposits were developed in the subsag. During the SQ4 period,the A/S was less than or equal to 1,the delta advanced into the center of the lacustrine basin, and shore shallow lacustrine deposits were widely developed in the subsag.(3)The SQ3 and SQ4 sequences of Wenchang Formation in the study area were selected to carry out numerical simulation of delta sedimentary system. During the simulation,three main parameters such as accommodation,sediment supply and transportation patterns were set in the software. The simulation results are consistent with the actual geological understanding,and the spatial distribution of sand bodies in the study area was determined.

Key words: accommodation, sediment supply, delta in rifted lacustrine basin, numerical simulation, Wenchang Formation, Paleogene, Lufeng 22 subsag, Pearl River Mouth Basin

中图分类号: 

  • TE122.2
[1] VAIL P R, MITCHUM R M JR, Thompson S. Seismic stratigraphy and global changes of sea level, Part 3:Relative changes of sea level from coastal onlap?PAYTON C E. Seismic stratigraphy:Applications to hydrocarbon exploration[M]. Tulsa:American Association of Petroleum Geologists, 1977:63-81.
[2] 瞿杰.湖盆三角洲砂体的地震反射特征及其沉积模式[J].石油地球物理勘探, 1987, 22(6):714-723. QU Jie. The seismic reflection characteristic of lake delta and its sedimentation model[J]. Oil Geophysical Prospecting, 1987, 22(6):714-723.
[3] 杨文杰,胡明毅,苏亚拉图,等.松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J].岩性油气藏, 2020, 32(4):59-68. YANG Wenjie, HU Mingyi, SOYOLT, et al. Sedimentary characteristics of fan delta during initial rifting stage in Sujiatun subdepression, Songliao Basin[J]. Lithologic Reservoirs, 2020, 32(4):59-68.
[4] ZHU Xiaomin, LI Shunli, WU Dong, et al. Sedimentary characteristics of shallow-water braided delta of the Jurassic, Junggar Basin, western China[J]. Journal of Petroleum Science and Engineering, 2017, 149:591-602.
[5] 于兴河,王德发,郑浚茂,等.辫状河三角洲砂体特征及砂体展布模型:内蒙古岱海湖现代三角洲沉积考察[J].石油学报, 1994, 15(1):26-37. YU Xinghe, WANG Defa, ZHENG Junmao, et al. 3-D extension models of braided deltaic sandbody in terrestrial facies:An observation on deposition of modern deltas in Daihai lake, Inner Montolia[J]. Acta Petrolei Sinica, 1994, 15(1):26-37.
[6] 冯文杰,芦凤明,吴胜和,等.断陷湖盆长轴缓坡辫状河三角洲前缘储层构型研究:以大港枣园油田枣南断块孔一段枣V油组为例[J].中国矿业大学学报, 2018, 47(2):367-379. FENG Wenjie, LU Fengming, WU Shenghe, et al. Reservoir architecture analysis of braided delta front developed in the long-axis gentle slope of faulted basin:A case study of the fifth Zaoyuan Formation. Zaonan fault block,Zaoyuan Oilfield, Dagang[J]. Journal of China University of Mining&Technology, 2018, 47(2):367-379.
[7] 蔡全升,胡明毅,陈孝红,等.小型断陷湖盆扇三角洲沉积特征与发育模式:以徐家围子断陷北部沙河子组为例[J].岩性油气藏, 2018, 30(1):86-96. CAI Quansheng, HU Mingyi, CHEN Xiaohong, et al. Sedimentary characteristics and development model of fan delta in small faulted basin:A case of Shahezi Formation in northern Xujiaweizi fault depression, NE China[J]. Lithologic Reservoirs, 2018, 30(1):86-96.
[8] 曾洪流,赵贤正,朱筱敏,等.隐性前积浅水曲流河三角洲地震沉积学特征:以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例[J].石油勘探与开发, 2015, 42(5):566-576. ZENG Hongliu, ZHAO Xianzheng, ZHU Xiaomin, et al. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta:A case from the Suning area of Raoyang Sag in Jizhong Depression,Bohai Bay Basin, NE China[J]. Petroleum Exploration and Development, 2015, 42(5):566-576.
[9] ZENG Hongliu, ZHU Xiaomin. ZHU Rukai. New insights into seismic stratigraphy of shallow-water progradational sequences, subseismic clinoforms[J]. Interpretation, 2013, 1(1):SA35-SA51.
[10] LIU Hao, VAN LOON A J, XU Jie, et al. Relationships between tectonic activity and sedimentary source-to-sink system parameters in a lacustrine rift basin:A quantitative case study of the Huanghekou Depression (Bohai Bay Basin, E China)[J]. Basin Research, 2020, 32:587-612.
[11] 施和生,何敏,张丽丽,等.珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J].中国海上油气, 2014, 26(3):11-22. SHI Hesheng, HE Min, ZHANG Lili, et al. Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2014, 26(3):11-22.
[12] 葛家旺,朱筱敏,吴陈冰洁,等.辫状河三角洲沉积特征及成因差异以珠江口盆地陆丰凹陷恩平组为例[J].石油学报, 2019, 40(增刊1):139-152. GE Jiawang, ZHU Xiaomin, WU-CHEN Bingjie, et al. Sedimentary characteristics and genetic difference of braided delta:A case study of Enping Formation in Lufeng Sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(Suppl 1):139-152.
[13] 张向涛,汪旭东,舒誉,等.珠江口盆地陆丰凹陷大中型油田地质特征及形成条件[J].中南大学学报(自然科学版), 2017, 48(11):2979-2989. ZHANG Xiangtao, WANG Xudong, SHU Yu, et al. Geological characteristics and forming conditions of large and medium oilfields in Lufeng sag of eastern Pearl River Mouth Basin[J]. Journal of Central South University (Science and Technology), 2017, 48(11):2979-2989.
[14] 陈锋,朱筱敏,葛家旺,等.珠江口盆地陆丰南地区层序地层及沉积体系研究[J].岩性油气藏, 2016, 28(4):67-77. CHEN Feng, ZHU Xiaomin, GE Jiawang, et al. Sequence stratigraphy and depositional systems of Wenchang Formation in the southern Lufeng area, Pearl River Mouth Basin[J]. Lithologic Reservoirs, 2016, 28(4):67-77.
[15] 芮志锋,林畅松,杜家元,等.关键层序界面识别及其在岩性油气藏勘探中的意义:以惠州凹陷珠江组为例[J].岩性油气藏, 2019, 31(1):96-105. RUI Zhifeng, LIN Changsong, DU Jiayuan, et al. Key sequence surfaces identification and its significance in the exploration of lithologic reservoirs:A case of Zhujiang Formation in Huizhou Depression[J]. Lithologic Reservoirs, 2019, 31(1):96-105.
[16] 王碧维,徐新德,吴杨瑜,等.珠江口盆地西部文昌凹陷油气来源与成藏特征[J].天然气地球科学, 2020, 31(7):980-992. WANG Biwei, XU Xinde, WU Yangyu, et al. Oil-gas origin and accumulation characteristics of Wenchang Depression, western Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2020, 31(7):980-992.
[17] 葛家旺,朱筱敏,雷永昌,等.多幕裂陷盆地构造-沉积响应及陆丰凹陷实例分析[J].地学前缘, 2021, 28(1):77-89. GE Jiawang, ZHU Xiaomin, LEI Yongchang, et al. Tectonosedimentary development of multiphase rift basins:An example of the Lufeng Depression[J]. Earth Science Frontiers, 2021, 28(1):77-89.
[18] 陈学海,卢双舫,薛海涛,等.海拉尔盆地呼和湖凹陷白垩系地震相[J].石油勘探与开发, 2011, 38(3):321-327. CHEN Xuehai, LU Shuangfang, XUE Haitao, et al. Seismic facies of the Cretaceous in the Huhehu Depression, Hailar Basin[J]. Petroleum Exploration and Development, 2011, 38(3):321-327.
[19] 任梦怡,江青春,刘震,等.南堡凹陷柳赞地区沙三段层序结构及其构造响应[J].岩性油气藏, 2020, 32(3):93-103. REN Mengyi, JIANG Qingchun, LIU Zhen, et al. Sequence architecture and structural response of the third member of Shahejie Formation in Liuzan area, Nanpu Sag[J]. Lithologic Reservoirs, 2020, 32(3):93-103.
[20] 王华,廖远涛,陆永潮,等.中国东部新生代陆相断陷盆地层序的构成样式[J].中南大学学报(自然科学版), 2010, 41(1):277-285. WANG Hua, LIAO Yuantao, LU Yongchao, et al. Sequence architecture styles of Cenozoic continental rift basins in East China[J]. Journal of Central South University (Science and Technology), 2010, 41(1):277-285.
[21] 程成,李双应,赵万为,等.安徽宿松坐山中二叠统栖霞组碳酸盐岩微相和黏土矿物特征及其对沉积相和古气候的指示[J].地质学报, 2016, 90(6):1208-1219. CHENG Cheng, LI Shuangying, ZHAO Wanwei, et al. The characteristics of microfacies and clay minerals of the Chihsia Formation carbonate rocks of Middle Permian in Susong, Anhui and its implication for sedimentary facies and paleoclimate[J]. Acta Geologica Sinica, 2016, 90(6):1208-1219.
[22] HARBAUGH J W, BONHAM-CARTER G. Computer simulation in geology[M]. New York:Wiley Interscience, 1970:575.
[23] 徐伟,房磊,张新叶,等.乌干达K油田扇三角洲沉积正演模拟与应用[J].地球科学, 2019, 44(2):513-523. XU Wei, FANG Lei, ZHANG Xinye, et al. Sedimentary forward simulation and application of fan delta in K oil field in Uganda[J]. Earth Science, 2019, 44(2):513-523.
[24] YIN Xiangdong, LU Shuangfang, LIU Keyu, et al. Non-uniform subsidence and its control on the temporal-spatial evolution of the black shale of the Early Silurian Longmaxi Formation in the western Yangtze block,South China[J]. Marine and Petroleum Geology, 2018, 98:881-889.
[25] YIN Xiangdong, HUANG Wenhui, WANG Pengfei, et al. Sedimentary evolution of overlapped sand bodies in terrestrial faulted lacustrine basin insights from 3D stratigraphic forward modeling[J]. Marine and Petroleum Geology, 2017, 86:1431-1443.
[1] 何玉, 周星, 李少轩, 丁洪波. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3): 60-69.
[2] 程丹华, 焦霞蓉, 王建伟, 庄东志, 王政军, 江山. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏, 2022, 34(3): 70-81.
[3] 郭美洁, 时保宏, 董雄英, 李昊东, 何川. 黄骅坳陷埕海斜坡古近系油气成藏条件及主控因素[J]. 岩性油气藏, 2022, 34(3): 82-92.
[4] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[5] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[6] 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74.
[7] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
[8] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[9] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[10] 张汶, 吕世聪, 赵大林, 贾海松, 蔡越钎. 渤海湾盆地西南部古近系滩坝沉积特征及主控因素[J]. 岩性油气藏, 2021, 33(3): 85-94.
[11] 黄华, 袁娟梅, 彭伟, 张亮, 文辉. 江汉盆地古近系潜江组盐湖沉积特征与成藏模式[J]. 岩性油气藏, 2021, 33(2): 9-16.
[12] 向巧维, 李小平, 丁琳, 杜家元. 珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义[J]. 岩性油气藏, 2021, 33(2): 93-103.
[13] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[14] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[15] 罗泽, 谢明英, 梁杰, 涂志勇, 侯凯. 地震伪井速度点宏观校正方法与应用——以珠江口盆地M气田为例[J]. 岩性油气藏, 2020, 32(3): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!