岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 115–121.doi: 10.12108/yxyqc.20200212

• 勘探技术 • 上一篇    下一篇

基于近似支持向量机的裂缝分类方法

何健1,2, 武刚3, 聂文亮1,2, 刘松鸣1,2, 黄伟1,2   

  1. 1. 成都理工大学 地球物理学院, 成都 610059;
    2. 油气藏地质及开发工程国家重点实验室·成都理工大学, 成都 610059;
    3. 中国石油化工股份有限公司胜利油田分公司 勘探开发研究院, 山东 东营 257015
  • 收稿日期:2019-03-14 修回日期:2019-05-27 出版日期:2020-03-21 发布日期:2020-01-19
  • 第一作者:何健(1991-),男,成都理工大学在读硕士研究生,研究方向为储层预测。地址:(610059)四川省成都市二仙桥东三路1号成都理工大学地球物理学院。Email:963395704@qq.com。
  • 基金资助:
    国家自然科学基金“基于频变信息的流体识别及流体可动性预测”(编号:41774142)和国家科技重大专项“复杂断块油田提高采收率技术”(编号:2016ZX05011-002)联合资助

Fracture classification method based on proximal support vector machine

HE Jian1,2, WU Gang3, NIE Wenliang1,2, LIU Songming1,2, HUANG Wei1,2   

  1. 1. Geophysical Institute, Chengdu University of Technology, Chengdu 610059, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    3. Research Institute of Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257015, Shandong, China
  • Received:2019-03-14 Revised:2019-05-27 Online:2020-03-21 Published:2020-01-19

摘要: 对广泛存在于各类岩层中的裂缝带进行精细刻画与综合预测是裂缝型油气藏勘探的关键。为了避免多解性问题,学者们通常采用多属性对其进行综合预测,但如何有效地利用众多地震属性与裂缝带发育程度之间的非线性关系对裂缝带发育状况进行准确分类仍是一大难题。将近似支持向量机算法引入裂缝带的分类识别中,建立了3种刻画储层裂缝带的地震属性与井中裂缝发育信息之间的非线性模型,得出了反映裂缝带特征的最佳判别规则,利用该规则对多个属性进行综合判别,克服了单属性的多解性,提高了储层裂缝带的分类精度。实例应用表明,该算法削弱了依靠单一因素识别储层裂缝带的局限性,为储层内裂缝带发育状况的准确分类提供了新的研究思路。

关键词: 裂缝分类方法, 非线性模型, 近似支持向量机, 多属性

Abstract: Fractured oil and gas reservoirs are widely found in all kinds of rock formations,how to make fine characterization and comprehensive prediction of fracture zone is the key to the exploration of fractured oil and gas reservoirs. In order to avoid the problem of multiple solutions,many scholars usually use multi-attribute to predict it synthetically. However,there are many complex nonlinear relationships between the development degree of cracks and some seismic attributes,the effective use of the correspondences for nonlinear prediction is also a difficult problem in the comprehensive prediction of fracture zones. The proximal support vector machine algorithm was introduced into the classification of fracture zone,and the nonlinear model between three kinds of seismic properties depicting reservoir fracture zone and crack development information in well were established, and the best discriminating rule reflecting the characteristics of fracture zone was obtained. Based on the rule, multiple seismic attributes can be comprehensively discriminated,the multi-solution of single attribute was overcome,and the classification accuracy of reservoir fracture zone was improved. Example showed that the algorithm weakened the limitation of identifying reservoir fracture zones by single factor classification,and it can provide a new research idea for the accurate classification of the development of fracture zones in rock formations.

Key words: fracture classification method, nonlinear model, proximal support vector machine, multi-attribute

中图分类号: 

  • P631.4
[1] 吕文雅, 曾联波, 刘静, 等.致密低渗透储层裂缝研究进展. 地质科技情报, 2016, 35(4):74-83. LYU W Y, ZENG L B, LIU J, et al. Research progress on cracks in dense low permeability reservoirs. Geological Science Technology Information, 2016, 35(4):74-83.
[2] 史洪亮, 杨克明, 王同.川西坳陷须五段致密砂岩与泥页岩储层特征及控制因素.岩性油气藏, 2017, 29(4):38-46. SHI H L, YANG K M, WANG T. Characteristics and controlling factors of tight sandstone and shale reservoirs of the fifth member of Xujiahe Formation in the Western Sichuan Depression. Lithologic Reservoirs, 2017, 29(4):38-46.
[3] 李翔, 王建功, 张平, 等.柴达木盆地英西地区E32裂缝成因与油气地质意义.岩性油气藏, 2018, 30(6):45-54. LI X, WANG J G, ZHANG P, et al. Fracture genesis mechanism and geological significance of E32 in Yingxi area,Qaidam Basin. Lithologic Reservoirs, 2018, 30(6):45-54.
[4] 张广智, 郑静静, 印兴耀.基于Curvelet变换的多尺度性识别裂缝发育带.石油地球物理勘探, 2011, 46(5):757-762. ZHANG G Z, ZHENG J J, YIN X Y. Identification technology of fracture zone and its strike based on the Curvelet transform. Oil Geophysical Prospecting, 2011, 46(5):757-762.
[5] 王蓓, 刘向君, 司马立强, 等.磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用.岩性油气藏, 2019, 31(2):124-133. WANG B, LIU X J, SIMA L Q, et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application. Lithologic Reservoirs, 2019, 31(2):124-133.
[6] 刘冬冬, 杨东旭, 张子亚, 等.基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2019, 31(3):76-85. LIU D D, YANG D X, ZHANG Z Y, et al. Fracture identification for tight reservoirs by conventional and imaging logging:a case study of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin. Lithologic Reservoirs, 2019, 31(3):76-85.
[7] 贺振华, 黄德济, 文晓涛.裂缝油气藏地球物理预测.成都:四川科学技术出版社, 2007:5-15. HE Z H, HUANG D J, WEN X T. Geophysical prediction of fractured reservoirs. Chengdu:Sichuan Science and Technology Press, 2007:5-15.
[8] XU J Y, WANG W X, YE L N. Rock fracture edge detection based on quaternion convolution by scale multiplication. Optical Engineering, 2009, 48(9):1-7.
[9] 刘松鸣, 武刚, 文晓涛, 等.曲率方位加强技术在识别低序级断层中的应用. 断块油气田, 2019, 26(1):37-41. LIU S M, WU G, WEN X T, et al. Application of curvature azimuth strengthening technology to low-level fault identification. Fault-Block Oil and Gas Field, 2019, 26(1):37-41.
[10] LI H, DOU Z, WANG S X, et al. Seismic multi-attributes recognition for carbonate fractured-vuggy reservoirs with "weak reflection" characteristics. Geophysical Prospecting for Petroleum, 2014, 53(6):713-719.
[11] ZHANG G, LI N, GUO H W, et al. Fracture identification based on remote detection acoustic reflection logging. Applied Geophysics, 2015, 12(4):473-481.
[12] 章惠, 关达, 向雪梅, 等.川东北元坝东部须四段裂缝型致密砂岩储层预测.岩性油气藏, 2018, 30(1):133-139. ZHANG H, GUAN D, XIANG X M,et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):133-139.
[13] CHUNG K C, TAN S S, HOLDSWORTH D K. Insolvency prediction model using multivariate discriminant analysis and artificial neural network for the finance industry in New Zealand. Social Science Electronic Publishing, 2008, 3(1):19-29.
[14] CHEN K C, YU-CHIAN C. Stroke prevention by traditional Chinese medicine? A genetic algorithm,support vector machine and molecular dynamics approach. Soft Matter, 2011, 7(8):4001-4008.
[15] MANUPATI V K, ANAND R, THAKKAR J J, et al. Adaptive production control system for a flexible manufacturing cell using support vector machine-based approach. International Journal of Advanced Manufacturing Technology, 2012, 67(1/4):969-981.
[16] 申辉林, 高松洋.基于BP神经网络进行裂缝识别研究.断块油气田, 2007, 14(2):60-62. SHEN H L, GAO S Y. Research on fracture identification based on BP neural network. Fault-Block Oil and Gas Field, 2007, 14(2):60-62.
[17] 石广仁.支持向量机在裂缝预测及含气性评价应用中的优越性. 石油勘探与开发, 2008, 35(5):588-594. SHI G R. Superiorities of support vector machine in fracture prediction and gassiness evaluation. Petroleum Exploration and Development, 2008, 35(5):588-594.
[18] ZHANG F M, CAO Q K, WANG Q Y. A comparative inquiry into supply chain performance appraisal based on support vector machine and neural network. IEEE 2008 International Conference on Management Science and Engineering(ICMSE), Long Beach, 2008.
[19] ZHAO T, JAVARAM V, MARFURT K J, et al. Lithofacies classification in Barnett Shale using proximal support vector machines. SEG Annual Meeting, Denver, 2014.
[20] ZHANG B, ZHAO T, JIN X C, et al. Brittleness evaluation of resource plays by integrating petrophysical and seismic data analysis. Interpretation, 2015, 3(2):T081-T092.
[21] 刘佳乐, 文晓涛, 张瑞, 等.基于近似支持向量机的流体识别方法.辽宁化工, 2016, 45(4):449-453. LIU J L, WEN X T, ZHANG R, et al. A Fluid identification method based on proximal support vector machine. Liaoning Chemical Industry, 2016, 45(4):449-453.
[22] 李文秀, 文晓涛, 李天, 等. 近似支持向量机的AVO类型判别.石油地球物理勘探, 2018, 53(5):969-974. LI W X, WEN X T, LI T, et al. AVO types discrimination based on a proximal support vector machine. Oil Geophysical Prospecting, 2018, 53(5):969-974.
[23] TONG S, KOLLER D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2002, 2(1):999-1006.
[24] TSOCHANTARIDIS I, HOFMANN T, JOACHIMS T, et al. Support vector machine learning for interdependent and structured output spaces. The 21 st ACM International Conference, Alberta, Canada, 2004.
[25] VAPNIK V N. 统计学习理论的本质. 张学工, 译. 北京:清华大学出版社, 2000:7-35. VAPNIK V N. The essence of statistical learning theory. ZHANG X G, trans. Beijing:Tsinghua University Press, 2000:7-35.
[26] FUNG G, MANGASARIAN O L. Proximal support vector machine classifiers. The Seventh ACM SIGKDD International Conference, San Francisco, 2001.
[27] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2):415-425.
[28] FUNG G M, MANGASARIAN O L. Multi-category proximal support vector machine classifiers. Machine Learning, 2005, 59(1/2):77-97.
[1] 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107.
[2] 黄彦庆, 刘忠群, 王爱, 肖开华, 林恬, 金武军. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30.
[3] 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52.
[4] 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257.
[5] 王俊瑞,梁力文,邓 强,田盼盼,谭伟雄. 基于多元回归模型重构测井曲线的方法研究及应用[J]. 岩性油气藏, 2016, 28(3): 113-120.
[6] 王利功,毕建军,王振辉,王学习,高星星,王亚飞. 地震平面沉积相解释方法研究及应用[J]. 岩性油气藏, 2011, 23(6): 84-88.
[7] 侯斌,桂志先,许辉群,何加成. 应用多属性神经网络方法预测油气[J]. 岩性油气藏, 2010, 22(3): 118-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .