岩性油气藏 ›› 2020, Vol. 32 ›› Issue (2): 115121.doi: 10.12108/yxyqc.20200212
何健1,2, 武刚3, 聂文亮1,2, 刘松鸣1,2, 黄伟1,2
HE Jian1,2, WU Gang3, NIE Wenliang1,2, LIU Songming1,2, HUANG Wei1,2
摘要: 对广泛存在于各类岩层中的裂缝带进行精细刻画与综合预测是裂缝型油气藏勘探的关键。为了避免多解性问题,学者们通常采用多属性对其进行综合预测,但如何有效地利用众多地震属性与裂缝带发育程度之间的非线性关系对裂缝带发育状况进行准确分类仍是一大难题。将近似支持向量机算法引入裂缝带的分类识别中,建立了3种刻画储层裂缝带的地震属性与井中裂缝发育信息之间的非线性模型,得出了反映裂缝带特征的最佳判别规则,利用该规则对多个属性进行综合判别,克服了单属性的多解性,提高了储层裂缝带的分类精度。实例应用表明,该算法削弱了依靠单一因素识别储层裂缝带的局限性,为储层内裂缝带发育状况的准确分类提供了新的研究思路。
中图分类号:
[1] 吕文雅, 曾联波, 刘静, 等.致密低渗透储层裂缝研究进展. 地质科技情报, 2016, 35(4):74-83. LYU W Y, ZENG L B, LIU J, et al. Research progress on cracks in dense low permeability reservoirs. Geological Science Technology Information, 2016, 35(4):74-83. [2] 史洪亮, 杨克明, 王同.川西坳陷须五段致密砂岩与泥页岩储层特征及控制因素.岩性油气藏, 2017, 29(4):38-46. SHI H L, YANG K M, WANG T. Characteristics and controlling factors of tight sandstone and shale reservoirs of the fifth member of Xujiahe Formation in the Western Sichuan Depression. Lithologic Reservoirs, 2017, 29(4):38-46. [3] 李翔, 王建功, 张平, 等.柴达木盆地英西地区E32裂缝成因与油气地质意义.岩性油气藏, 2018, 30(6):45-54. LI X, WANG J G, ZHANG P, et al. Fracture genesis mechanism and geological significance of E32 in Yingxi area,Qaidam Basin. Lithologic Reservoirs, 2018, 30(6):45-54. [4] 张广智, 郑静静, 印兴耀.基于Curvelet变换的多尺度性识别裂缝发育带.石油地球物理勘探, 2011, 46(5):757-762. ZHANG G Z, ZHENG J J, YIN X Y. Identification technology of fracture zone and its strike based on the Curvelet transform. Oil Geophysical Prospecting, 2011, 46(5):757-762. [5] 王蓓, 刘向君, 司马立强, 等.磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用.岩性油气藏, 2019, 31(2):124-133. WANG B, LIU X J, SIMA L Q, et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application. Lithologic Reservoirs, 2019, 31(2):124-133. [6] 刘冬冬, 杨东旭, 张子亚, 等.基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2019, 31(3):76-85. LIU D D, YANG D X, ZHANG Z Y, et al. Fracture identification for tight reservoirs by conventional and imaging logging:a case study of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin. Lithologic Reservoirs, 2019, 31(3):76-85. [7] 贺振华, 黄德济, 文晓涛.裂缝油气藏地球物理预测.成都:四川科学技术出版社, 2007:5-15. HE Z H, HUANG D J, WEN X T. Geophysical prediction of fractured reservoirs. Chengdu:Sichuan Science and Technology Press, 2007:5-15. [8] XU J Y, WANG W X, YE L N. Rock fracture edge detection based on quaternion convolution by scale multiplication. Optical Engineering, 2009, 48(9):1-7. [9] 刘松鸣, 武刚, 文晓涛, 等.曲率方位加强技术在识别低序级断层中的应用. 断块油气田, 2019, 26(1):37-41. LIU S M, WU G, WEN X T, et al. Application of curvature azimuth strengthening technology to low-level fault identification. Fault-Block Oil and Gas Field, 2019, 26(1):37-41. [10] LI H, DOU Z, WANG S X, et al. Seismic multi-attributes recognition for carbonate fractured-vuggy reservoirs with "weak reflection" characteristics. Geophysical Prospecting for Petroleum, 2014, 53(6):713-719. [11] ZHANG G, LI N, GUO H W, et al. Fracture identification based on remote detection acoustic reflection logging. Applied Geophysics, 2015, 12(4):473-481. [12] 章惠, 关达, 向雪梅, 等.川东北元坝东部须四段裂缝型致密砂岩储层预测.岩性油气藏, 2018, 30(1):133-139. ZHANG H, GUAN D, XIANG X M,et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):133-139. [13] CHUNG K C, TAN S S, HOLDSWORTH D K. Insolvency prediction model using multivariate discriminant analysis and artificial neural network for the finance industry in New Zealand. Social Science Electronic Publishing, 2008, 3(1):19-29. [14] CHEN K C, YU-CHIAN C. Stroke prevention by traditional Chinese medicine? A genetic algorithm,support vector machine and molecular dynamics approach. Soft Matter, 2011, 7(8):4001-4008. [15] MANUPATI V K, ANAND R, THAKKAR J J, et al. Adaptive production control system for a flexible manufacturing cell using support vector machine-based approach. International Journal of Advanced Manufacturing Technology, 2012, 67(1/4):969-981. [16] 申辉林, 高松洋.基于BP神经网络进行裂缝识别研究.断块油气田, 2007, 14(2):60-62. SHEN H L, GAO S Y. Research on fracture identification based on BP neural network. Fault-Block Oil and Gas Field, 2007, 14(2):60-62. [17] 石广仁.支持向量机在裂缝预测及含气性评价应用中的优越性. 石油勘探与开发, 2008, 35(5):588-594. SHI G R. Superiorities of support vector machine in fracture prediction and gassiness evaluation. Petroleum Exploration and Development, 2008, 35(5):588-594. [18] ZHANG F M, CAO Q K, WANG Q Y. A comparative inquiry into supply chain performance appraisal based on support vector machine and neural network. IEEE 2008 International Conference on Management Science and Engineering(ICMSE), Long Beach, 2008. [19] ZHAO T, JAVARAM V, MARFURT K J, et al. Lithofacies classification in Barnett Shale using proximal support vector machines. SEG Annual Meeting, Denver, 2014. [20] ZHANG B, ZHAO T, JIN X C, et al. Brittleness evaluation of resource plays by integrating petrophysical and seismic data analysis. Interpretation, 2015, 3(2):T081-T092. [21] 刘佳乐, 文晓涛, 张瑞, 等.基于近似支持向量机的流体识别方法.辽宁化工, 2016, 45(4):449-453. LIU J L, WEN X T, ZHANG R, et al. A Fluid identification method based on proximal support vector machine. Liaoning Chemical Industry, 2016, 45(4):449-453. [22] 李文秀, 文晓涛, 李天, 等. 近似支持向量机的AVO类型判别.石油地球物理勘探, 2018, 53(5):969-974. LI W X, WEN X T, LI T, et al. AVO types discrimination based on a proximal support vector machine. Oil Geophysical Prospecting, 2018, 53(5):969-974. [23] TONG S, KOLLER D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2002, 2(1):999-1006. [24] TSOCHANTARIDIS I, HOFMANN T, JOACHIMS T, et al. Support vector machine learning for interdependent and structured output spaces. The 21 st ACM International Conference, Alberta, Canada, 2004. [25] VAPNIK V N. 统计学习理论的本质. 张学工, 译. 北京:清华大学出版社, 2000:7-35. VAPNIK V N. The essence of statistical learning theory. ZHANG X G, trans. Beijing:Tsinghua University Press, 2000:7-35. [26] FUNG G, MANGASARIAN O L. Proximal support vector machine classifiers. The Seventh ACM SIGKDD International Conference, San Francisco, 2001. [27] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2):415-425. [28] FUNG G M, MANGASARIAN O L. Multi-category proximal support vector machine classifiers. Machine Learning, 2005, 59(1/2):77-97. |
[1] | 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107. |
[2] | 黄彦庆, 刘忠群, 王爱, 肖开华, 林恬, 金武军. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30. |
[3] | 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52. |
[4] | 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257. |
[5] | 王俊瑞,梁力文,邓 强,田盼盼,谭伟雄. 基于多元回归模型重构测井曲线的方法研究及应用[J]. 岩性油气藏, 2016, 28(3): 113-120. |
[6] | 王利功,毕建军,王振辉,王学习,高星星,王亚飞. 地震平面沉积相解释方法研究及应用[J]. 岩性油气藏, 2011, 23(6): 84-88. |
[7] | 侯斌,桂志先,许辉群,何加成. 应用多属性神经网络方法预测油气[J]. 岩性油气藏, 2010, 22(3): 118-120. |
|