岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 4252.doi: 10.12108/yxyqc.20220405
王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明
WANG Lifeng, SONG Ruiyou, CHEN Dianyuan, XU Tao, PAN Guangchao, HAN Guangming
摘要: 通过层序地层学和地震沉积学方法,对莺歌海盆地D13区新近系黄流组大型海底扇逐级解剖,并通过多属性融合地震切片技术对海底扇内水道进行雕刻识别,利用地震剖面上的“平点”反射特征预测含气甜点。研究结果表明:①研究区大型海底扇为古蓝江三角洲再次搬运而形成,发育了自南东向北西依次退积的4期扇体,并识别出11期砂体,早期扇的顶部地层被晚期扇不同程度侵蚀,相邻扇砂体间纵向局部连通。②海底扇中优质储层主要分布在沉积能量强、高水动力条件下形成的海底扇水道中,扇体内发育串珠状、复合型、曲流河形等类型的水道,其中“大、厚、宽”的水道为厚层优质“甜点”储层发育区;③地震剖面上的“平点”反射特征可用于识别水道沉积中的含气甜点,莺歌海盆地D13区平点具有水道内部近水平反射、水道底面反射能量变弱、平点向构造低部位略倾斜等基本特征。
中图分类号:
[1] 杨朝强, 周伟, 王玉, 等.莺歌海盆地东方区黄流组一段小层划分及海底扇沉积演化主控因素[J]. 中国海上油气, 2022, 34(1):55-65. YANG Zhaoqiang, ZHOU Wei, WANG Yu, et al. Subdivision of the first member of Huangliu Formation in Dongfang area of Yinggehai Basin and the main factors controlling the sedimentary evolution of submarine fan[J]. China Offshore Oil and Gas, 2022, 34(1):55-65. [2] 谢玉洪, 范彩伟.莺歌海盆地东方区黄流组储层成因新认识[J].中国海上油气, 2010, 22(6):355-359. XIE Yuhong, FAN Caiwei. Some new knowledge about the origin of Huangliu Formation reservoirs in Dongfang area, Yinggehai Basin[J]. China Offshore Oil and Gas, 2010, 22(6):355-359. [3] 钟泽红, 刘景环, 张道军, 等.莺歌海盆地东方区大型海底扇成因及沉积储层特征[J].石油学报, 2013, 34(增刊2):102-111. ZHONG Zehong, LIU Jinghuan, ZHANG Daojun, et al. Origin and sedimentary reservoir characteristics of a large submarine fan in Dongfang area, Yinggehai Basin[J]. Acta Petrolei Sinica, 2013, 34(Suppl 2):102-111. [4] 岳绍飞, 张辉, 覃利娟, 等.莺歌海盆地东方区黄流组一段砂质碎屑流沉积模式[J].大庆石油地质与开发, 2020, 39(4):9-18. YUE Shaofei, ZHANG Hui, QIN Lijuan, et al. Sandy debris-flow sedimentary mode in member1 of Huangliu Formation in Dongfang area of Yinggehai Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(4):9-18. [5] 王华, 陈思, 甘华军, 等.浅海背景下大型浊积扇研究进展及堆积机制探讨:以莺歌海盆地黄流组重力流为例[J].地学前缘, 2015, 22(1):21-34. WANG Hua, CHEN Si, GAN Huajun, et al. Accumulation mechanism of large shallow marine turbidite deposits:A case study of gravity flow deposits of the Huangliu Formation in Yinggehai Basin[J]. Earth Science Frontiers, 2015, 22(1):21-34. [6] 李华, 王英民, 徐强, 等.莺歌海盆地中新统黄流组一段重力流沉积特征[J].中国矿业大学学报, 2014, 43(2):279-285. LI Hua, WANG Yingmin, XU Qiang, et al. Sedimentary characteristics of gravity flow deposits in the first member of Miocene Huangliu Formation, Yinggehai Basin[J]. Journal of China University of Mining & Technology, 2014, 43(2):279-285. [7] 黄志龙, 朱建成, 马剑, 等.莺歌海盆地东方区高温高压带黄流组储层特征及高孔低渗成因[J].石油与天然气地质, 2015, 36(2):288-296. HUANG Zhilong, ZHU Jiancheng, MA Jian, et al. Characteristics and genesis of high-porosity and low-permeability reservoirs in the Huangliu Formation of high temperature and high pressure zone in Dongfang area, Yinggehai Basin[J]. Oil & Gas Geology, 2015, 36(2):288-296. [8] 马剑, 黄志龙, 吴红烛, 等.莺歌海盆地东方区黄流组储层微观孔喉特征及对物性的影响[J].沉积学报, 2015, 33(5):983-990. MA Jian, HUANG Zhilong, WU Hongzhu, et al. Characteristics of reservoir microscopic pores and throats and their influence on reservoir physical properties in Huangliu Formation of DF area, Yinggehai Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5):983-990. [9] 黄银涛, 姚光庆, 周锋德.莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义[J].地球科学, 2016, 41(9):1526-1538. HUANG Yintao, YAO Guangqing, ZHOU Fengde. Provenance analysis and petroleum geological significance of shallow-marine gravity flow sandstone for Huangliu Formation of Dongfang area in Yinggehai Basin, the South China Sea[J]. Earth Science, 2016, 41(9):1526-1538. [10] 宋瑞有, 于俊峰, 韩光明, 等.莺歌海盆地底辟类型及侵入方式[J].世界地质, 2017, 36(4):1235-1243. SONG Ruiyou, YU Junfeng, HAN Guangming, et al. Diapiric types and intrusion patterns in Yinggehai Basin[J]. Global Geology, 2017, 36(4):1235-1243. [11] 李伟, 刘平, 艾能平, 等.莺歌海盆地乐东地区中深层储层发育特征及成因机理[J].岩性油气藏, 2020, 32(1):19-26. LI Wei, LIU Ping, AI Nengping, et al. Development characteristics and genetic mechanism of mid-deep reservoirs in Ledong area, Yinggehai Basin[J]. Lithologic Reservoirs, 2020, 32(1):19-26. [12] 裴健翔, 于俊峰, 王立锋, 等.莺歌海盆地中深层天然气勘探的关键问题及对策[J].石油学报, 2011, 32(4):573-579. PEI Jianxiang, YU Junfeng, WANG Lifeng, et al. Challenges and strategies for the success of natural gas exploration in mid-deep strata of the Yinggehai Basin[J]. Acta Petrolei Sinica, 2011, 32(4):573-579. [13] 张伙兰, 裴健翔, 张迎朝, 等.莺歌海盆地东方区中深层黄流组超压储集层特征[J].石油勘探与开发, 2013, 40(3):284-293. ZHANG Huolan, PEI Jianxiang, ZHANG Yingzhao, et al. Overpressure reservoirs in the mid-deep Huangliu Formation of the Dongfang area, Yinggehai Basin, South China Sea[J]. Petroleum Exploration and Development, 2013, 40(3):284-293. [14] 芦凤明, 蔡明俊, 张阳, 等.碎屑岩储层构型分级方案与研究方法探讨[J].岩性油气藏, 2020, 32(6):1-11. LU Fengming, CAI Mingjun, ZHANG Yang, et al. Discussion on architecture classification scheme and research methods of clastic reservoir[J]. Lithologic Reservoirs, 2020, 32(6):1-11. [15] 张建新, 范彩伟, 谭建财, 等.莺歌海盆地中新世沉积体系演化特征及勘探意义[J].地质科技情报, 2019, 38(6):51-59. ZHANG Jianxin, FAN Caiwei, TAN Jiancai, et al. Evolution characteristics of sedimentary system in Yinggehai Basin in Miocene and its exploration significance[J]. Geological Science and Technology Information, 2019, 38(6):51-59. [16] 张佳佳, 吴胜和.海底扇朵叶沉积构型研究进展[J].中国海上油气, 2019, 31(5):88-106. ZHANG Jiajia, WU Shenghe. Research progress on the depositional architecture of submarine-fan lobes[J]. China Offshore Oil and Gas, 2019, 31(5):88-106. [17] 钟泽红, 张迎朝, 何小胡, 等.莺歌海盆地东方区黄流组层序叠加样式与海底扇内部构型[J]. 海洋地质与第四纪地质, 2015, 35(2):91-99. ZHONG Zehong, ZHANG Yingzhao, HE Xiaohu, et al. The sequence stratigraphy of Huangliu Formation and the internal structures of submarine fan in Dongfang area, Yinggehai Basin[J]. Marine Geology & Quaternary Geology, 2015, 35(2):91-99. [18] 张迎朝, 王立锋, 李绪深, 等.莺歌海盆地砂质块体搬运沉积及其天然气聚集[J].石油实验地质, 2016, 38(2):189-196. ZHANG Yingzhao, WANG Lifeng, LI Xushen, et al. Sandy mass transport deposit model and its natural gas accumulation in the Yinggehai Basin[J]. Petroleum Geology & Experiment, 2016, 38(2):189-196. [19] 李芳, 邓勇, 郭伟, 等. 莺歌海盆地高温超压区"甜点"储层地球物理预测方法[J]. 地质科技情报,2019,38(3):299-304. LI Fang, DENG Yong, GUO Wei, et al."Dessert" reservoir prediction by geophysical methods at high temperature and overpressure district of Yinggehai Basin[J]. Geological Science and Technology Information, 2019, 38(3):299-304. [20] 刘化清, 苏明军, 倪长宽, 等.薄砂体预测的地震沉积学研究方法[J].岩性油气藏, 2018, 30(2):1-11. LIU Huaqing, SU Mingjun, NI Changkuan, et al. Thin bed prediction from interbedded background:Revised seismic sedimentological method[J]. Lithologic Reservoirs, 2018, 30(2):1-11. [21] 余鹏.分频技术在储层预测中的应用[J].油气地球物理, 2006, 4(1):45-47. YU Peng. Application of spectral decomposition technique in reservoir prediction[J]. Petroleum Geophysics, 2006, 4(1):45-47. [22] 赵晓明, 吴胜和, 刘丽.西非陆坡区深水复合水道沉积构型模式[J].中国石油大学学报(自然科学版), 2012, 36(6):1-5. ZHAO Xiaoming, WU Shenghe, LIU Li. Sedimentary architecture model of deep-water channel complexes in slope area of West Africa[J]. Jounrnal of China University of Petroleum(Edition of Natural Sciences), 2012, 36(6):1-5. [23] 李华, 何幼斌, 王振奇.深水高弯度水道-堤岸沉积体系形态及特征[J].古地理学报, 2011, 13(2):284-293. LI Hua, HE Youbin, WANG Zhenqi. Morphology and characteristics of deep water high sinuous channel-levee system[J]. Journal of Palaeogeography, 2011, 13(2):284-293. [24] 裴健翔, 陈杨, 郝德峰, 等.莺歌海盆地中央坳陷中新世海底扇识别及其形成控制因素[J].东北石油大学学报, 2016, 40(5):46-55. PEI Jianxiang, CHEN Yang, HAO Defeng, et al. Identification and controlling factors of submarine fan in Miocene in central depression zone in Yinggehai Basin[J]. Journal of Northeast Petroleum University, 2016, 40(5):46-55. [25] 于俊峰, 刘全稳, 王立锋, 等.莺歌海盆地东方13气田气水分布模式[J].海相油气地质, 2020, 25(2):132-140. YU Junfeng, LIU Quanwen, WANG Lifeng, et al. Gas-water distribution models of Dongfang 13 gas field,Yinggehai Basin[J]. Marine Origin Petroleum Geology, 2020, 25(2):132-140. [26] 邓勇, 潘光超, 李明, 等. 莺歌海盆地"平点"叠前AVO特征及识别[J].石油地球物理勘探, 2019, 54(5):1123-1130. DENG Yong, PAN Guangchao, LI Ming, et al. Prestack AVO characteristics and identification of flat spot in Yinggehai Basin[J]. Oil Geophysical Prospecting, 2019, 54(5):1123-1130. [27] 马勇新, 肖前化, 米洪刚, 等. 莺歌海盆地高温高压气藏水溶气释放对气水界面的影响[J].地球科学, 2017, 42(8):1340-1347. MA Yongxin, XIAO Qianhua, MI Honggang, et al. Influence of water-gas releasing on gas-water inter face for Yinggehai Basin high temperature and overpressure gas field[J]. Earth Science, 2017, 42(8):1340-1347. [28] 王振峰, 裴健翔.莺歌海盆地中深层黄流组高压气藏形成新模式:DF14井钻获强超压优质高产天然气层的意义[J].中国海上油气, 2011, 23(4):213-217. WANG Zhenfeng, PEI Jianxiang. A new accumulation model of high pressure gas in Huangliu Formation of the middle-deep interval in Yinggehai Basin:The significance of discovering a goodquality gas pay with overpressure and high production in well DF14[J]. China Offshore Oil and Gas, 2011, 23(4):213-217. [29] 潘光超, 裴健翔, 周家雄, 等.莺歌海盆地中深层超压带气水界面平点特征分析[J].中国海上油气, 2014, 26(5):42-46. PAN Guangchao, PEI Jianxiang, ZHOU Jiaxiong, et al. An analysis of flat spot features on a gas-water interface in the middle-deep overpressure zone, Yinggehai Basin[J]. China Offshore Oil and Gas, 2014, 26(5):42-46. |
[1] | 李恒萱, 温志新, 宋成鹏, 刘祚冬, 季天愚, 沈一平, 耿珂. 塞内加尔盆地演化过程与岩性油气藏勘探前景[J]. 岩性油气藏, 2023, 35(6): 45-53. |
[2] | 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107. |
[3] | 黄彦庆, 刘忠群, 王爱, 肖开华, 林恬, 金武军. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30. |
[4] | 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168. |
[5] | 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95. |
[6] | 范彩伟, 贾茹, 柳波, 付晓飞, 侯静娴, 靳叶军. 莺歌海盆地中央坳陷带成藏体系的盖层评价及控藏作用[J]. 岩性油气藏, 2023, 35(1): 36-48. |
[7] | 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18. |
[8] | 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151. |
[9] | 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161. |
[10] | 周东红, 谭辉煌, 张生强. 渤海海域垦利6-1油田新近系复合河道砂体地震描述技术[J]. 岩性油气藏, 2022, 34(4): 13-21. |
[11] | 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103. |
[12] | 杨丽莎, 陈彬滔, 马轮, 史忠生, 薛罗, 王磊, 史江龙, 赵艳军. 陆相湖盆坳陷期源—汇系统的要素特征及耦合关系——以南苏丹Melut盆地北部坳陷新近系Jimidi组为例[J]. 岩性油气藏, 2021, 33(3): 27-38. |
[13] | 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84. |
[14] | 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83. |
[15] | 王德英, 于娅, 张藜, 史盼盼. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J]. 岩性油气藏, 2020, 32(1): 1-10. |
|