岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 73–83.doi: 10.12108/yxyqc.20200508

• 油气地质 • 上一篇    下一篇

基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例

王航, 杨海风, 黄振, 白冰, 高雁飞   

  1. 中海石油 (中国) 有限公司天津分公司 渤海石油研究院, 天津 300459
  • 收稿日期:2019-12-16 修回日期:2020-03-05 出版日期:2020-10-01 发布日期:2020-08-08
  • 第一作者:王航(1988-),男,硕士,工程师,主要从事油气储层预测与油气运移成藏等方面的研究工作。地址:(300459)天津市滨海新区海川路2121号。Email:wanghang3@cnooc.com.cn。
  • 基金资助:
    “十三五”国家科技重大专项“渤海海域勘探新领域及关键技术研究”(编号:2016ZX05024-023)资助

A new model for sedimentary evolution of fluvial faices based on accommodation space change and its impact on hydrocarbon accumulation: a case study of Kenli-A structure in Laizhouwan Depression

WANG Hang, YANG Haifeng, HUANG Zhen, BAI Bing, GAO Yanfei   

  1. Bohai Oilfield Research Institute, Tianjin Branch of CNOOC Limited, Tianjin 300459, China
  • Received:2019-12-16 Revised:2020-03-05 Online:2020-10-01 Published:2020-08-08

摘要: 为了厘清莱州湾凹陷馆陶组油气差异成藏机理,应用层序地层学原理,结合岩心、钻井、测井、地震等资料,对莱州湾凹陷垦利A构造馆陶组沉积期的沉积基准面及可容纳空间变化规律进行研究,建立了层序地层格架与河流相沉积演化模式,分析了河流相储层的控藏作用。结果表明:①馆陶组作为三级层序,内部可划分为3个体系域,由早期高可容纳空间体系域、低可容纳空间体系域和晚期高可容纳空间体系域构成。②馆陶组发育网状河、辫状河和曲流河3种河流相类型,受不同体系域的影响,三者在纵向上不断演化,导致储层垂向相变以及平面差异分布较为明显。③不同河流相的差异性决定了不同的油藏特征,早期发育的网状河储层侧向上相互切割拼接,垂向上存在稳定的泥岩夹层,导致横向连通性较好、垂向连通性较差,形成岩性-构造油藏;中期发育的辫状河储层在侧向和垂向上往复切割、相互叠置,侧向与垂向连通性均较好,形成构造-层状油藏;晚期发育的曲流河储层受大套泥岩隔层阻隔,侧向及垂向连通性均较差,形成孤立的岩性油藏。以上认识可为研究区的下一步勘探评价提供新的依据。

关键词: 河流相, 可容纳空间变化, 沉积演化, 成藏特征, 新近系, 馆陶组, 莱州湾凹陷

Abstract: In order to clarify the differential accumulation mechanism of Guantao Formation in Laizhouwan Depression,the sequence stratigraphic framework and the sedimentary evolution pattern were established by using sequence stratigraphic theories,core and well-logging analysis and seismic data,and a new model for fluvial facies reservoir characterization was proposed which emphasized the fluctuation of sedimentary base level and the change of accommodation space. The results show that:(1)The Guantao Formation was a third-order sequence,and it was divided into three system tracts including early-stage high accommodation system tract,low accommodation system tract and late-stage high accommodation system tract.(2)Three fluvial facies were recognized in the study area including anastomosing river,braided river and meandering river. Each fluvial facie indicated a distinctive system tract,and the evolutionary process of fluvial facies was affected by the change of system tracts,which resulted in the vertical and lateral distribution differences of reservoir sand bodies.(3)The sand body distribution features of different fluvial facies controlled the hydrocarbon migration and accumulation:the anastomosing river sand bodies which had well lateral connectivity and poor vertical connectivity formed structurallithologic oil reservoir;the braided river sand bodies indicated predominant superimposition with well lateral and vertical connectivity,which became effective pathway for hydrocarbon migration and accumulation in structural high position and formed structural-formation oil reservoir;the meandering river sand bodies which were surrounded by thick mudstone had poor lateral and vertical connectivity,and formed isolated lithologic oil reservoir,thus the coupling relationship of oil-migrating faults and reservoir sand bodies was crucial to hydrocarbon accumulation.

Key words: fluvial facies, accommodation space change, sedimentary evolution, hydrocarbon accumulation features, Neogene, Guantao Formation, Laizhouwan Depression

中图分类号: 

  • TE121.3
[1] WRIGHT V P, MARRIOTT S B. The sequence stratigraphy of fluvial depositional systems:the role of floodplain sediment storage. Sedimentary Geology, 1993, 86(3/4):203-210.
[2] SHANLEY K W, MCCABE P J. Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin, 1994, 78(4):544-568.
[3] OLSEN T, STEEL R, HOGSETH K, et al. Sequential architecture in a fluvial succession:Sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Price Canyon, Utah. Journal of Sedimentary Research, 1995, 65(2):265-280.
[4] FANTI F, CATUNEANU O. Fluvial sequence stratigraphy:the Wapiti Formation, west-central Alberta, Canada. Journal of Sedimentary Research, 2010, 80(4):320-338.
[5] CATUNEANU O, ELANGO H N. Tectonic control on fluvial styles:the Balfour Formation of the Karoo Basin, South Africa. Sedimentary Geology, 2001, 140(3/4):291-313.
[6] 邓宏文, 王红亮, 阎伟鹏, 等.河流相层序地层构成模式探讨. 沉积学报, 2004, 22(3):373-379. DENG H W, WANG H L, YAN W P, et al. Architecture model of sequence stratigraphy in fluvial facies. Acta Sedimentologica Sinica, 2004, 22(3):373-379.
[7] 吴因业, 张天舒, 张志杰, 等.沉积体系域类型、特征及石油地质意义.古地理学报, 2010, 12(1):69-81. WU Y Y, ZHANG T S, ZHANG Z J, et al. Types and characteristics of depositional systems tract and its petroleum geological significance. Journal of Palaeogeography, 2010, 12(1):69-81.
[8] 黄雷, 王应斌, 武强, 等.渤海湾盆地莱州湾凹陷新生代盆地演化.地质学报, 2012, 86(6):867-876. HUANG L, WANG Y B, WU Q, et al. Cenozoic tectonic evolution of the Laizhouwan Sag in Bohai Bay Basin. Acta Geologica Sinica, 2012, 86(6):867-876.
[9] 余一欣, 周心怀, 徐长贵, 等.渤海海域新生代断裂发育特征及形成机制.石油与天然气地质, 2011, 32(2):273-279. YU Y X, ZHOU X H, XU C G, et al. Characteristics and formation mechanism of the Cenozoic faults in the Bohai Sea waters. Oil and Gas Geology, 2011, 32(2):273-279.
[10] 万桂梅, 周东红, 汤良杰.渤海海域郯庐断裂带对油气成藏的控制作用.石油与天然气地质, 2009, 30(4):450-454. WAN G M, ZHOU D H, TANG L J. Control of the Tan-Lu fault zone on hydrocarbon accumulation in the Bohai Sea waters. Oil and Gas Geology, 2009, 30(4):450-454.
[11] 王应斌, 黄雷, 王强, 等.渤海浅层油气富集规律:以黄河口凹陷为例.石油与天然气地质, 2011, 32(5):637-641. WANG Y B, HUANG L, WANG Q, et al. Hydrocarbon accumulation in the shallow reservoirs of the Bohai Bay Basin:a case study of the Huanghekou Sag. Oil and Gas Geology, 2011, 32(5):637-641.
[12] 张爽, 叶加仁, 刘文超.莱州湾凹陷断裂控藏机理.新疆石油地质, 2013, 34(2):179-182. ZHANG S, YE J R, LIU W C. Mechanism of controlling of fault on oil accumulation in Laizhouwan Sag in southern Bohai Bay Basin. Xinjiang Petroleum Geology, 2013, 34(2):179-182.
[13] 杨波, 牛成民, 孙和风, 等.莱州湾凹陷垦利10-1亿吨级油田发现的意义.中国海上油气, 2011, 23(3):148-153. YANG B, NIU C M, SUN H F, et al. The significance of discovering Kenli 10-1 oilfield in 108 tons reserves grade in Laizhouwan Sag. China Offshore Oil and Gas, 2011, 23(3):148-153.
[14] 牛成民.渤海南部海域莱州湾凹陷构造演化与油气成藏.石油与天然气地质, 2012, 33(3):424-431. NIU C M. Tectonic evolution and hydrocarbon accumulation of Laizhouwan Depression in southern Bohai Sea. Oil and Gas Geology, 2012, 33(3):424-431.
[15] 余一欣, 周心怀, 汤良杰, 等.渤海湾地区X型正断层及油气意义.地质学报, 2009, 83(8):1083-1088. YU Y X, ZHOU X H, TANG L J, et al. X-Pattern normal faults in the offshore Bohai Bay Basin and its significance on hydrocarbon. Acta Geologica Sinica, 2009, 83(8):1083-1088.
[16] 刘小平, 周心怀, 吕修祥, 等.渤海海域油气分布特征及主控因素.石油与天然气地质, 2009, 30(4):497-502. LIU X P, ZHOU X H, LYU X X, et al. Hydrocarbon distribution features and main controlling factors in the Bohai Sea waters. Oil and Gas Geology, 2009, 30(4):497-502.
[17] 朱伟林, 李建平, 周心怀, 等.渤海新近系浅水三角洲沉积体系与大型油气田勘探.沉积学报, 2008, 26(4):575-582. ZHU W L, LI J P, ZHOU X H, et al. Neogene shallow water deltaic system and large hydrocarbon accumulations in Bohai Bay, China. Acta Sedimentologica Sinica, 2008, 26(4):575-582.
[18] 黄雷, 周心怀, 刘池洋, 等.渤海海域新生代盆地演化的重要转折期:证据及区域动力学分析.中国科学:D辑地球科学, 2012, 42(6):893-904. HUANG L, ZHOU X H, LIU C Y, et al. The important turning points during evolution of Cenozoic basin offshore the Bohai Sea:Evidence and regional dynamics analysis. Science in China:Series D Earth Sciences, 2012, 42(6):893-904.
[19] JIANG Z X, LU H B, YU W Q, et al. Transformation of accommodation space of the Cretaceous Qingshankou Formation, the Songliao Basin, NE China. Basin Research, 2005, 17:569-582.
[20] 姜在兴, 张乐, 吝文, 等. 孤南洼陷古近系沙三段中亚段可容空间转换系统研究.地学前缘, 2008, 15(2):26-34. JIANG Z X, ZHANG L, LIN W, et al. Research on the accommodation space transformation system in the Es3 member of the Gunan Sag. Earth Science Frontiers, 2008, 15(2):26-34.
[21] 彭文绪, 辛仁臣, 孙和风, 等. 渤海海域莱州湾凹陷的形成和演化.石油学报, 2009, 30(5):654-660. PENG W X, XIN R C, SUN H F, et al. Formation and evolution of Laizhou Bay Sag in Bohai Bay. Acta Petrolei Sinica, 2009, 30(5):654-660.
[22] 陈容涛, 牛成民, 王清斌, 等.黄河口凹陷南部缓坡带馆陶组河流相层序特征.新疆石油地质, 2018, 39(5):542-548. CHEN R T, NIU C M, WANG Q B, et al. Characteristics of fluvial sedimentary sequences of Guantao Formation in the southern gentle slope belt, Huanghekou Sag. Xinjiang Petroleum Geology, 2018, 39(5):542-548.
[23] SLAGLE A L, RYAN W B F, CARBOTTE S M, et al. Latestage estuary infilling controlled by limited accommodation space in the Hudson River. Marine Geology, 2006, 232:181-202.
[24] PALLADINO G. Tectonic and eustatic controls on Pliocene accommodation space along the front of the southern Apennine thrust-belt(Basilicata, southern Italy). Basin Research, 2011, 23:591-614.
[25] 邓宏文, 王洪亮, 李小孟.高分辨率层序地层对比在河流相中的应用.石油与天然气地质, 1997, 18(2):90-95. DENG H W, WANG H L, LI X M. Application of high-resolution sequence stratigraphic correlation to fluvial facies. Oil and Gas Geology, 1997, 18(2):90-95.
[26] MIALL A D. The geology of stratigraphic sequences. Berlin:Springer Verlag, 1997.
[27] SCHLAGER W. Accommodation and supply:a dual control on stratigraphic sequences. Sedimentary Geology, 1993, 86:111-136.
[28] MIALL A D. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic timeslice analysis. AAPG Bulletin, 2002, 86(7):1201-1216.
[29] 章轩玮. 从常规体系域到非常规体系域:河流相层序地层学研究的一个重要进展.海相油气地质, 2013, 18(1):39-46. ZHANG X W. From conventional systems tracts to unconventional systems tracts:an important progress of fluvial sequence stratigraphy research. Marine Origin Petroleum Geology, 2013, 18(1):39-46.
[30] 王启明, 黄晓波, 周晓光, 等.莱南斜坡带沙四段-沙三下亚段原型盆地恢复及其对沉积的控制.地质力学学报, 2018,24(3):371-380. WANG Q M, HUANG X B, ZHOU X G, et al. The recovery of prototype basin and its control over the deposition in the lower third sub-member and fourth member of the Shahejie Formation in the south slope zone of the Laizhouwan Sag. Journal of Geomechanics, 2018, 24(3):371-380.
[31] 张周良. 河流相地层的层序地层学与河流类型. 地质论评, 1996, 42(增刊1):188-193. ZHANG Z L. Fluvial sequence stratigraphy and river types. Geological Review, 1996, 42(Suppl 1):188-193.
[32] 谢庆宾, 管守锐, 薛培华, 等.嫩江齐齐哈尔段现代网状河沉积研究.石油勘探与开发, 2000, 27(5):106-108. XIE Q B, GUAN S R, XUE P H, et al. Depositional characteristics of the modern anastomosing river in Qiqihar section of Nenjiang River. Petroleum Exploration and Development, 2000, 27(5):106-108.
[33] 崔连可, 单敬福, 李浮萍, 等.基于稀疏井网条件下的古辫状河道心滩砂体估算:以苏里格气田苏X区块为例.岩性油气藏, 2018, 30(1):155-164. CUI L K, SHAN J F, LI F P, et al. Estimating method of braided channel bar under sparse well net:a case from Su X block in Sulige Gas Field. Lithologic Reservoirs, 2018, 30(1):155-164.
[34] 芮志锋, 林畅松, 杜家元, 等.关键层序界面识别及其在岩性油气藏勘探中的意义:以惠州凹陷珠江组为例. 岩性油气藏, 2019, 31(1):96-105. RUI Z F, LIN C S, DU J Y, et al. Key sequence surfaces identification and its significance in the exploration of lithologic reservoirs:a case of Zhujiang Formation in Huizhou Depression. Lithologic Reservoirs, 2019, 31(1):96-105.
[35] 甘立琴, 苏进昌, 谢岳, 等.曲流河储层隔夹层研究:以秦皇岛32-6油田为例.岩性油气藏, 2017, 29(6):128-134. GAN L Q, SU J C, XIE Y, et al. Interlayers of meandering river reservoir:a case from Qinhuangdao 32-6 oilfield. Lithologic Reservoirs, 2017, 29(6):128-134.
[36] 唐武, 王英民, 赵志刚, 等. 河型转化研究进展综述. 地质论评, 2016, 62(1):138-152. TANG W, WANG Y M, ZHAO Z G, et al. A review of fluvial pattern transformation. Geological Review, 2016, 62(1):138-152.
[37] 王随继, 倪晋仁, 王光谦.古河型演化模式及其影响因素的沉积体系分析.石油勘探与开发, 2000, 27(5):102-105. WANG S J, NI J R, WANG G Q. Depositional system analysis on the evolution model of ancient river type and its controlling factors. Petroleum Exploration and Development, 2000, 27(5):102-105.
[38] 杨占龙, 沙雪梅, 魏立花, 等.地震隐性层序界面识别、高频层序格架建立与岩性圈闭勘探:以吐哈盆地西缘侏罗系-白垩系为例.岩性油气藏, 2019, 31(6):1-13. YANG Z L, SHA X M, WEI L H, et al. Seismic subtle sequence boundary identification, high-frequency sequence framework establishment and lithologic trap exploration:a case study of Jurassic to Cretaceous in the western margin of Turpan-Kumul Basin. Lithologic Reservoirs, 2019, 31(6):1-13.
[39] 刘丽. 埕岛油田馆陶组曲流河砂体叠置模式. 岩性油气藏, 2019, 31(1):40-48. LIU L. Sandbody superimposed pattern of meandering river facies of Guantao Formation in Chengdao Oilfield. Lithologic Reservoirs, 2019, 31(1):40-48.
[1] 尹路, 李博, 齐雯, 孙东, 乐幸福, 马慧. 天然氢气规模生成的成因类型与成藏特点[J]. 岩性油气藏, 2024, 36(6): 1-11.
[2] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[3] 孙汉骁, 邢凤存, 谢武仁, 钱红杉. 四川盆地及周缘地区晚奥陶世岩相古地理演化[J]. 岩性油气藏, 2024, 36(1): 121-135.
[4] 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107.
[5] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[6] 方锐, 蒋裕强, 陈沁, 曾令平, 罗宇卓, 周亚东, 杜磊, 杨广广. 川东北五宝场地区侏罗系沙溪庙组沉积特征[J]. 岩性油气藏, 2023, 35(2): 47-58.
[7] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[8] 邓美玲, 王宁, 李新琦, 陈容涛, 刘岩, 徐耀辉. 渤海莱州湾凹陷中部古近系沙三段烃源岩地球化学特征及沉积环境[J]. 岩性油气藏, 2023, 35(1): 49-62.
[9] 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95.
[10] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[11] 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151.
[12] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[13] 周东红, 谭辉煌, 张生强. 渤海海域垦利6-1油田新近系复合河道砂体地震描述技术[J]. 岩性油气藏, 2022, 34(4): 13-21.
[14] 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52.
[15] 刘阳平, 吴博然, 于忠良, 余成林, 王立鑫, 尹艳树. 辫状河砂岩储层三维地质模型重构技术——以冀东油田高尚堡区块新近系馆陶组为例[J]. 岩性油气藏, 2022, 34(4): 159-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .