岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 84–92.doi: 10.12108/yxyqc.20200509

• 油气地质 • 上一篇    下一篇

柴达木盆地英雄岭地区硫化氢形成机理及分布预测

田继先1, 赵健2, 张静2, 孔骅1, 房永生3, 曾旭1, 沙威2, 王牧2   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国石油青海油田分公司 勘探开发研究院, 甘肃 敦煌 736202;
    3. 中国石油青海油田分公司 勘探事业部, 甘肃 敦煌 736200
  • 收稿日期:2019-10-31 修回日期:2020-03-02 出版日期:2020-10-01 发布日期:2020-08-08
  • 第一作者:田继先(1981-),男,博士,高级工程师,主要从事天然气地质方面的研究工作。地址:(065007)河北省廊坊市广阳区中国石油勘探开发研究院廊坊院区。Email:tjx69@petrochina.com.cn。
  • 基金资助:
    中国石油天然气股份有限公司科技重大专项“柴达木盆地建设高原大油气田勘探开发关键技术研究与应用”(编号:2016E-0102)资助

Formation mechanism and distribution prediction of hydrogen sulfide in Yingxiongling area,Qaidam Basin

TIAN Jixian1, ZHAO Jian2, ZHANG Jing2, KONG Hua1, FANG Yongsheng3, ZENG Xu1, SHA Wei2, WANG Mu2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China;
    3. Department of Exploration, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2019-10-31 Revised:2020-03-02 Online:2020-10-01 Published:2020-08-08

摘要: 近年来,柴达木盆地英雄岭地区下干柴沟组上段(E32)咸化湖相碳酸盐岩中发现了含硫化氢气藏。为了明确硫化氢的成因机理和有效预测其分布,开展了天然气地化特征分析和模拟实验。结果表明:①英雄岭中部地区硫化氢为硫酸盐热化学还原(TSR)产物,温度越高,生成量越大。烃源岩的发育、广泛分布的膏盐岩地层、较高的地温梯度及大量发育的孔隙型储层为含硫化氢气藏的形成提供了有利条件。②受晚喜山运动整体抬升影响,现今地层在历史成藏时期所经历的最高古地温更高。③E32沉积期,湖盆中心岩盐发育,油气封盖条件较好,盐下孔隙型储层的发育有利于硫化氢的富集,综合预测英雄岭中部—干柴沟一带的盐下地层为硫化氢富集区。该研究成果对含硫化氢气藏的勘探部署与生产安全均具有重要意义。

关键词: 硫化氢, 硫酸盐热化学还原, 湖相碳酸盐, 咸化湖, 英雄岭地区, 柴达木盆地

Abstract: In recent years,gas reservoirs containing high hydrogen sulfide have been found in lacustrine carbonate rocks in the upper member of the lower Ganchaigou Formation(E32)in Yingxiongling area of Qaidam Basin. In order to clarify the genetic mechanism of hydrogen sulfide and predict its distribution effectively,the geochemical characteristic analysis of natural gas and simulated experiment were carried out. The results show that:(1)Hydrogen sulfide is a product of thermochemical sulphate reduction(TSR)in the central of Yingxiongling area,and the higher the temperature,the greater the production. The development of source rocks,the widely distributed salt-rock formation,the high geothermal gradient and the large number of developed pore reservoirs provide favorable conditions for the formation of hydrogen sulfide gas reservoirs.(2)Under the influence of the overall uplift of the Late Himalayan movement,the maximum paleogeothermal temperature experienced by the present strata in historical accumulation period is higher.(3)During E32 deposition period,the rock salt developed in the center of the lake basin,and the oil and gas sealing conditions are good. The development of the pre-salt pore reservoirs is conducive to the enrichment of hydrogen sulfide. It was comprehensively predicted that the pre-salt strata in the central of Yingxiongling-Ganchaigou area are hydrogen sulfide enrichment areas. The research results are of great significance for the exploration,deployment and production safety of hydrogen sulfide gas reservoir.

Key words: hydrogen sulfide, thermochemical sulphate reduction, lacustrine carbonate, salinized lake, Yingxiongling area, Qaidam Basin

中图分类号: 

  • TE122.1
[1] 戴金星. 中国含硫化氢的天然气分布特征、分类及其成因探讨. 沉积学报, 1985, 3(4):109-120. DAI J X. Distribution,classification and origin of natural gas with hydrogen sulphide in China. Acta Sedimentologica Sinica, 1985,3(4):109-120.
[2] 朱光有, 张水昌, 梁英波. 中国海相碳酸盐岩气藏硫化氢形成的控制因素和分布预测. 科学通报, 2007, 52(增刊1):115-125.ZHU G Y, ZHANG S C, LIANG Y B. Control factors and distribution prediction of hydrogen sulfide formation in marine carbonate gas reservoirs in China. Chinese Science Bulletin, 2007, 52(Suppl 1):115-125.
[3] 阎俊峰, 阳建华, 阎进培. 我国下第三系高硫化氢气体的发现及其地质意义. 地质论评, 1982, 28(4):372-373. YAN J F, YANG J H, YAN J P. The discovery of Tertiary high hydrogen sulfide gas in China and its geological significance. Geological Review, 1982, 28(4):372-373.
[4] 张永庶, 伍坤宇, 姜营海, 等. 柴达木盆地英西深层碳酸盐岩油气藏地质特征. 天然气地球科学, 2018, 29(3):358-369. ZHANG Y S, WU K Y, JIANG Y H, et al. Geological characteristics of deep carbonate hydrocarbon-bearing pool in the western Yingxiongling area in Qaidam Basin. Natural Gas Geoscience, 2018, 29(3):358-369.
[5] 黄成刚, 倪祥龙, 马新民, 等. 致密湖相碳酸盐岩油气富集模式及稳产、高产主控因素:以柴达木盆地英西地区为例. 西北大学学报(自然科学版), 2017, 47(5):724-738. HUANG C G, NI X L, MA X M, et al. Petroleum and gas enrichment pattern and major controlling factors of stable and high production of tight lacustrine carbonate rock reservoirs:a case of the Yingxi area in Qaidam Basin. Journal of Northwest University(Natural Science Edition), 2017, 47(5):724-738.
[6] 朱光有, 张水昌, 梁英波, 等. 四川盆地H2S的硫同位素组成及其成因探讨. 地球化学, 2006, 35(4):333-345. ZHU G Y, ZHANG S C, LIANG Y B, et al. Stable sulfur isotopic composition of hydrogen sulfide and its genesis in Sichuan Basin. Geochimica, 2006, 35(4):333-345.
[7] 沈平, 徐永昌, 王晋江, 等. 天然气中硫化氢硫同位素组成及沉积地球化学相. 沉积学报, 1997, 15(2):216-219. SHEN P, XU Y C, WANG J J, et al. Sulphur isotopic compositions of hydrogen sulphides in natural gases and the sedimentary geochemical facies. Acta Sedimentologica Sinica, 1997, 15(2):216-219.
[8] 赵兴齐, 陈践发, 张晨, 等. 天然气藏中硫化氢成因研究进展. 新疆石油地质, 2011, 32(5):552-556. ZHAO X Q, CHEN J F, ZHANG C, et al. The research progress of hydrogen sulfide genesis in gas reservoir. Xinjiang Petroleum Geology, 2011, 32(5):552-556.
[9] 郭荣涛, 马达德, 张永庶, 等. 柴达木盆地英西地区下干柴沟组上段超压孔缝型储层特征及形成机理. 石油学报, 2019, 40(4):411-422. GUO R T, MA D D, ZHANG Y S, et al. Characteristics and formation mechanism of overpressure pore-slot reservoirs for upper member of Xiangchaigou Formation in the west of Yixiong ridge, Qiadam Basin. Acta Petrolei Sinica, 2019, 40(4):411-422.
[10] 易定红, 王建功, 石兰亭, 等. 柴达木盆地英西地区E32碳酸盐岩沉积演化特征. 岩性油气藏, 2019, 31(2):46-55. YI D H, WANG J G, SHI L T, et al. Sedimentary evolution characteristics of E32 carbonate rocks in Yingxi area, Qaidam Basin. Lithologic Reservoirs, 2019, 31(2):46-55.
[11] 陈启林, 张小军, 黄成刚, 等. 柴达木盆地英西地区渐新统硫酸盐硫同位素组成及其地质意义. 地质论评, 2019, 65(3):558-572. CHEN Q L, ZHANG X J, HUANG C G, et al. Sulfur isotopic composition of sulphate in Oligocene series in Yingxi area, Qaidam Basin, and its geological significance. Geological Review, 2019, 65(3):558-572.
[12] 张斌, 何媛媛, 陈琰, 等. 柴达木盆地西部咸化湖相优质烃源岩形成机理. 石油学报, 2018, 39(6):674-685. ZHANG B, HE Y Y, CHEN Y, et al. Formation mechanism of excellent saline lacustrine source rocks in the western Qaidam Basin. Acta Petrolei Sinica, 2018, 39(6):674-685.
[13] 黄成刚, 李智勇, 倪祥龙, 等. 柴达木盆地英西地区E32盐类矿物成因及油气地质意义. 现代地质, 2017, 31(4):779-790. HUANG C G, LI Z Y, NI X L, et al. Origin of salt minerals and oil-gas geological significance of E32 reservoirs in saline lacustrine basin of the Yingxi area, Qaidam Basin. Geoscience, 2017, 31(4):779-790.
[14] 夏志远, 刘占国, 李森明, 等. 岩盐成因与发育模式:以柴达木盆地英西地区古近系下干柴沟组为例. 石油学报, 2017, 38(1):55-66. XIA Z Y, LIU Z G, LI S M, et al. Origin and developing model of rock salt:a case study of Lower Ganchaigou Formation of the Paleogene in the west of Yingxiong ridge, Qaidam Basin. Acta Petrolei Sinica, 2017, 38(1):55-66.
[15] 宋光永, 夏志远, 王艳清, 等. 柴西地区渐新统膏盐岩的形成环境与发育模式. 油气地质与采收率, 2018, 25(5):50-56. SONG G Y, XIA Z Y, WANG Y Q, et al. Formation environment and development modes of the Oligocene lacustrine gypsumsalt rock in western Qaidam Basin. Petroleum Geology and Recovery Efficiency, 2018, 25(5):50-56.
[16] 彭立才, 杨平, 濮人龙. 陆相咸化湖泊沉积硫酸盐岩硫同位素组成及其地质意义. 矿物岩石地球化学通报, 1999(2):31-34. PENG L C, YANG P, PU R L. The sulfur isotope composition of sulfate rock deposited in continental brackish lakes and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 1999(2):31-34.
[17] 谢增业, 李志生, 王春怡, 等. 硫化氢生成模拟实验研究.石油实验地质, 2008(2):192-195. XIE Z Y, LI Z S, WANG C Y, et al. Study on generation of hydrogen sulfide by simulation experiment. Petroleum Geology and Experiment, 2008(2):192-195.
[18] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展.地球科学进展, 2018, 33(11):1112-1129. CHEN Q L, HUANG C G. Research progress of modification of reservoirs by dissolution in sedimentary rock. Advances in Earth Science, 2018, 33(11):1112-1129.
[19] 马永生, 郭彤楼, 朱光有, 等. 硫化氢对碳酸盐储集层溶蚀改造作用的模拟实验证据:以川东飞仙关组为例. 科学通报, 2007, 52(增刊1):136-140. MA Y S, GUO T L, ZHU G Y, et al. Simulation experimental evidence of hydrogen sulfide on the dissolution of carbonate reservoirs:a case study of Feixianguan Formation in eastern Sichuan province. Chinese Science Bulletin, 2007, 52(Supple 1):136-140.
[1] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[2] 王建功, 李江涛, 李翔, 高妍芳, 张平, 孙秀建, 白亚东, 左洺滔. 柴西地区新生界湖相微生物碳酸盐岩岩相组合差异性及控制因素[J]. 岩性油气藏, 2023, 35(3): 1-17.
[3] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[4] 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
[5] 司马立强, 马骏, 刘俊丰, 杨会洁, 王亮, 赵宁. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏, 2023, 35(2): 1-10.
[6] 杨韬政, 刘成林, 田继先, 李培, 冉钰, 冯德浩, 李国雄, 吴育平. 柴达木盆地大风山凸起地层压力预测及成因分析[J]. 岩性油气藏, 2023, 35(1): 96-107.
[7] 夏青松, 陆江, 杨鹏, 张昆, 杨朝屹, 聂俊杰, 朱云舫, 李立芳. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征[J]. 岩性油气藏, 2023, 35(1): 132-144.
[8] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[9] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[10] 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74.
[11] 杜江民, 龙鹏宇, 秦莹民, 张桐, 马宏宇, 盛军. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏, 2021, 33(5): 1-10.
[12] 张文文, 韩长城, 田继军, 张治恒, 张楠, 李正强. 吉木萨尔凹陷二叠系芦草沟组层序地层划分及演化特征[J]. 岩性油气藏, 2021, 33(5): 45-58.
[13] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[14] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[15] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .