岩性油气藏 ›› 2023, Vol. 35 ›› Issue (1): 83–95.doi: 10.12108/yxyqc.20230108

• 地质勘探 • 上一篇    下一篇

高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例

杨楷乐1,2, 何胜林1,2, 杨朝强1,2, 王猛1,2, 张瑞雪3, 任双坡4,5, 赵晓博4,5, 姚光庆4,5   

  1. 1. 中海石油(中国)有限公司湛江分公司, 广东 湛江 524057;
    2. 中海石油(中国)有限公司海南分公司, 海口 570311;
    3. 中国石化江汉油田分公司 江汉采油厂, 湖北 潜江 433124;
    4. 中国地质大学(武汉)构造与油气资源教育部重点实验室, 武汉 430074;
    5. 中国地质大学(武汉)资源学院, 武汉 430074
  • 收稿日期:2021-10-25 修回日期:2022-04-15 出版日期:2023-01-01 发布日期:2023-01-06
  • 通讯作者: 任双坡(1989-),男,博士,副教授,主要从事油气储层地质方面的教学与研究工作。Email:rensp@cug.edu.cn。 E-mail:rensp@cug.edu.cn
  • 作者简介:杨楷乐(1988-),男,工程师,主要从事油气田评价与储量综合研究方面的工作。地址:(570300)海南省海口市秀英区长滨三路6号。Email:yangkl3@cnooc.com.cn
  • 基金资助:
    中海石油(中国)有限公司湛江分公司项目“乐东10区沉积模式及储层非均质性研究”(编号: CCL-2019-ZJFN0734)资助

Diagenesis characteristics of tight sandstone reservoirs with high temperature,overpressure and high CO2 content: A case study of Neogene Meishan-Huangliu Formation in LD10 area,Yinggehai Basin

YANG Kaile1,2, HE Shenglin1,2, YANG Zhaoqiang1,2, WANG Meng1,2, ZHANG Ruixue3, REN Shuangpo4,5, ZHAO Xiaobo4,5, YAO Guangqing4,5   

  1. 1. Zhanjiang Branch of CNOOC (China) Co., Ltd., Zhanjiang 524057, Guangdong, China;
    2. Hainan Branch of CNOOC (China) Co., Ltd., Haikou 570311, China;
    3. Jianghan Oil Production Plant, Sinopec Jianghan Oilfield Company, Qianjiang 433124, Hubei, China;
    4. Key Laboratory of Tectonics and Petroleum Resource, Ministry of Education, China University of Geosciences (Wuhan), Wuhan 430074, China;
    5. School of Earth Resources, China University of Geosciences (Wuhan), Wuhan 430074, China
  • Received:2021-10-25 Revised:2022-04-15 Online:2023-01-01 Published:2023-01-06

摘要: 利用薄片鉴定、扫描电镜、阴极发光及碳氧同位素分析等手段,对莺歌海盆地LD10区新近系梅山组-黄流组高温-超压-高CO2背景下的储层成岩作用特征及其对孔隙的影响进行了系统研究。研究结果表明: ①莺歌海盆地LD10区新近系梅山组-黄流组储层发育重力流沉积,岩性以中-细粒长石岩屑石英砂岩为主,储层物性以特低-低孔、特低渗特征为主。②压实、胶结和溶蚀作用是研究区主要的成岩作用类型。超压对黏土矿物的转化及石英次生加大具有明显抑制作用,并在一定程度上保护了原生孔隙。富含CO2的高温流体不仅造成了黏土矿物的异常转化,同时促进了溶蚀作用发生,增加了次生孔隙。③研究区黄二段储层的成岩演化序列为: 菱铁矿胶结→石英次生加大→绿泥石胶结→长石淋滤溶蚀→高岭石形成→早期方解石胶结→早期白云石胶结→长石溶蚀→方解石溶蚀→伊利石大量生成→晚期铁方解石、铁白云石形成。④总体上,压实作用使孔隙度减少了45.30%~62.93%,胶结作用使孔隙度减少了1.65%~35.01%,溶蚀作用使孔隙度增加了0.72%~8.00%。其中,黄流组中下部砂岩储层受到了超压保护和CO2溶蚀作用的双重影响,物性较好,钻井过程中应考虑高CO2风险。

关键词: 致密砂岩储层, 高温-超压-高CO2, 成岩演化, 梅山组-黄流组, 新近系, LD10区, 莺歌海盆地

Abstract: By means of thin section identification,scanning electron microscopy,cathodoluminescence,and carbon and oxygen isotope analysis,the diagenesis characteristics and their influence on pores of Neogene MeishanHuangliu Formation under the background of high temperature,overpressure and high CO2 content in LD10 area of Yinggehai Basin were studied. The results show that: (1) The reservoirs of Neogene Meishan-Huangliu Formation in LD10 area of Yinggehai Basin are developed with gravity flow. The lithologies are mainly medium-fine feldspathic lithic quartz sandstones,and the reservoir physical properties are mainly characterized by ultra-low porosity and ultra-low permeability. (2) Compaction,cementation and dissolution are the main diagenesis types in the study area. Overpressure can obviously inhibit the transformation of clay minerals and the secondary enlargement of quartz,which can protect the primary pores to a certain extent. The high-temperature fluid rich in CO2 not only causes the abnormal transformation of clay minerals,but also promotes the dissolution to increase the secondary pores. (3) The diagenetic sequence of the second member of Huangliu Formation is summarized as siderite cementation→secondary enlargement of quartz→chlorite cementation→early stage feldspar dissolution→ kaolinite formation→early stage calcite cementation→early stage dolomite cementation→feldspar dissolution→ calcite dissolution→massive illite formation→late stage iron calcite and iron dolomite formation. (4) In general, compaction reduces the porosity by 45.30%-62.93%,and cementation reduces the porosity by 1.65%-35.01%, while dissolution increases the porosity by 0.72%-8.00%. The sandstone reservoir in the middle and lower part of Huangliu Formation is affected by overpressure and CO2 dissolution,with good physical properties,so high CO2 risk should be considered during drilling.

Key words: tight sandstone reservoir, high temperature-overpressure-high CO2 content, diagenetic evolution, Meishan-Huangliu Formation, Neogene, LD10 area, Yinggehai Basin

中图分类号: 

  • TE121.1
[1] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012,33 (2): 173-187. ZOU Caineng,ZHU Rukai,WU Songtao,et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012,33 (2): 173-187.
[2] 操应长,葸克来,刘可禹,等. 陆相湖盆致密砂岩油气储层储集性能表征与成储机制: 以松辽盆地南部下白垩统泉头组四段为例[J]. 石油学报,2018,39 (3): 247-265. CAO Yingchang,XI Kelai,LIU Keyu,et al. Reservoir properties characterization and its genetic mechanism for tight sandstone oil and gas reservoir in lacustrine basin: The case of the fourth member of Lower Cretaceous Quantou Formation in the southern Songliao Basin[J]. Acta Petrolei Sinica,2018,39 (3): 247-265.
[3] 王永骁,付斯一,张成弓,等. 鄂尔多斯盆地东部山西组2 段致密砂岩储层特征[J]. 岩性油气藏,2021,33 (6): 12-20. WANG Yongxiao,FU Siyi,ZHANG Chenggong,et al. Characteristics of tight sandstone reservoirs of the second member of Shanxi Formation in eastern Ordos Basin[J]. Lithologic Reservoirs,2021,33 (6): 12-20.
[4] 杨计海,黄保家,陈殿远. 莺歌海盆地坳陷斜坡带低孔特低渗气藏形成条件及勘探潜力[J]. 中国海上油气,2018,30 (1): 11-21. YANG Jihai,HUANG Baojia,CHEN Dianyuan. Accumulation condition and exploration potential of low porosity and ultra-low permeability sandstone gas reservoirs on the depression slope belt of Yinggehai Basin[J]. China Offshore Oil and Gas,2018, 30 (1): 11-21.
[5] 陈杨,张建新,黄灿,等. 莺歌海盆地黄流组轴向重力流水道充填演化特征[J]. 东北石油大学学报,2019,43 (6): 23-32. CHEN Yang,ZHANG Jianxin,HUANG Can,et al. Filling evolution characteristics of the axial gravity channel in Huangliu Formation in Yinggehai Basin[J]. Journal of Northeast Petroleum University,2019,43 (6): 23-32.
[6] 陈杨,张道军,张建新,等. 莺歌海盆地莺东斜坡黄流组轴向重力流水道沉积特征及控制因素[J]. 东北石油大学学报, 2020,44 (2): 91-102. CHEN Yang,ZHANG Daojun,ZHANG Jianxin,et al. Sedimentary characteristics and controlling factors of the axial gravity channel in Huangliu Formation of the Yingdong slope area in Yinggehai Basin[J]. Northeast Petroleum University,2020,44 (2): 91-102.
[7] LI Xiaopeng,WANG Hua,YAO Guangqing,et al. Sedimentary features and filling process of the Miocene gravity-driven deposits in Ledong area,Yinggehai Basin,South China Sea[J]. Journal of Petroleum Science and Engineering,2022,209: 109886.
[8] JIANG Tao,CAO Licheng,XIE Xinong,et al. Insights from heavy minerals and zircon U-Pb ages into the middle MiocenePliocene provenance evolution of the Yinggehai Basin,northwestern South China Sea[J]. Sedimentary Geology,2015,327: 32-42.
[9] YAN Yi,CARTER A,PALK C,et al. Understanding sedimentation in the Song Hong-Yinggehai Basin,South China Sea[J]. Geochemistry Geophysics Geosystems,2011,12 (6): 1-15.
[10] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京: 科学出版社,2005: 1-414. HAO Fang. Hydrocarbon generation kinetics and mechanism of hydrocarbon accumulation in overpressure basin[M]. Beijing: Science Press,2005: 1-414.
[11] 高煜婷. 莺歌海盆地成岩作用研究与孔隙演化[D]. 大庆: 东北石油大学,2011. GAO Yuting. Diagenesis research and pore evolution in Yinggehai Basin[D]. Daqing: Northeast Petroleum University,2011.
[12] 范彩伟,曹江骏,罗静兰,等. 异常高压下海相重力流致密砂岩非均质性特征及其影响因素: 以莺歌海盆地LD10区中新统黄流组储集层为例[J]. 石油勘探与开发,2021,48 (5): 903-915. FAN Caiwei,CAO Jiangjun,LUO Jinglan,et al. Heterogeneity characteristics and influencing factors of marine gravity flow tight sandstone under abnormal high pressure: a case study from the Miocene Huangliu Formation reservoir in LD10 area, Yinggehai Basin,South China Sea[J]. Petroleum Exploration and Development,2021,48 (5): 903-915.
[13] 姜平,何胜林,杨朝强,等. 莺歌海盆地LD10区高含CO2天 然气充注期次精细厘定与成藏模式[J]. 地球科学,2021,47 (5): 1569-1585. JIANG Ping,HE Shenglin,YANG Zhaoqiang,et al. High CO2 natural gas charging events,timing and accumulation pattern in LD10 area of Yinggehai Basin[J]. Earth Science,2021,47 (5): 1569-1585.
[14] 刘为,杨希冰,张秀苹,等. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏,2019,31 (2): 75-82. LIU Wei,YANG Xibing,ZHANG Xiuping,et al. Characteristics and controlling factors of gravity flow deposits of Huangliu Formation in eastern Yinggehai Basin[J]. Lithologic Reservoirs,2019,31 (2): 75-82.
[15] GARZANTI E. From static to dynamic provenance analysis- Sedimentary petrology upgraded[J]. Sedimentary Geology,2016, 336: 3-13.
[16] GARZANTI E. Petrographic classification of sand and sandstone[J]. Earth-Science Reviews,2019,192: 545-563.
[17] 李超,罗晓容,范彩伟,等. 莺歌海盆地乐东斜坡区乐东A构造储层超压形成机制及其对天然气成藏的启示[J]. 地质科学,2021,56 (4): 1034-1051. LI Chao,LUO Xiaorong,FAN Caiwei,et al. Generation mechanism of overpressure and its implication for natural gas accumulation in Miocene reservoir in Ledong A structrure,Ledong slope,Yinggehai Basin[J]. Chinese Journal of Geology,2021, 56 (4): 1034-1051.
[18] YU Lei,WU Keqiang,LIU Li,et al. Dawsonite and ankerite formation in the LDX-1 structure,Yinggehai Basin,South China Sea: An analogy for carbon mineralization in subsurface sandstone aquifers[J]. Applied Geochemistry,2020,120: 104663.
[19] DUAN Wei,LI Chunfeng,LUO Chengfei,et al. Effect of formation overpressure on the reservoir diagenesis and its petroleum geological significance for the DF11 block of the Yinggehai Basin,the South China Sea[J]. Marine and Petroleum Geology,2018,97: 49-65.
[20] FU Meiyan,SONG Rongcai,XIE Yuhong,et al. Diagenesis and reservoir quality of overpressured deep-water sandstone following inorganic carbon dioxide accumulation: Upper Miocene Huangliu Formation,Yinggehai Basin,South China Sea[J]. Marine and Petroleum Geology,2016,77: 954-972.
[21] KEITH M L,WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta,1964,28 (10/11): 1787-1816.
[22] SHACKLETON N J. Attainment of isotopic equilibrium between ocean water and benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial[J]. Colloques International du Centre National Du Recherche Scientifique,1974,219 (3): 203-209.
[23] FRONVAL T,JENSEN N B,BUCHARDT B. Oxygen isotope disequilibrium precipitation of calcite in Lake Arreso,Denmark[J]. Geology,1995,23: 463-466.
[24] LIU Lihui,SUTO Y,BIGNALL G,et al. CO2 injection to granite and sandstone in experimental rock/hot water systems[J]. Energy Conversion and Management,2003,44 (9): 1399-1410.
[25] 任大忠,周兆华,梁睿翔,等. 致密砂岩气藏黏土矿物特征及其对储层性质的影响: 以鄂尔多斯盆地苏里格气田为例[J]. 岩性油气藏,2019,31 (4): 42-53. REN Dazhong,ZHOU Zhaohua,LIANG Ruixiang,et al. Characteristics of clay minerals and its impacts on reservoir quality of tight sandstone gas reservoir: A case from Sulige gas field, Ordos Basin[J]. Lithologic Reservoirs,2019,31 (4): 42-53.
[26] LONGSTAFFE F J. Clays and the resource geologist[M]. Calgary: Mineralogical Association of Canada,1981: 1-109.
[27] 王振峰,何家雄,解习农. 莺歌海盆地泥-流体底辟带热流体活动对天然气运聚成藏的控制作用[J]. 地球科学——中国地质大学学报,2004,29 (2): 203-210. WANG Zhenfeng,HE Jiaxiong,XIE Xinong. Heat flow action and its control on natural gas migration and accumulation in mud-fluid diapir areas in Yinggehai Basin[J]. Earth Science- Journal of China University of Geosciences,2004,29 (2): 203-210.
[28] 孟元林,黄文彪,王粤川,等. 超压背景下黏土矿物转化的化学动力学模型及应用[J]. 沉积学报,2006,24 (4): 461-467. MENG Yuanlin,HUANG Wenbiao,WANG Yuechuan,et al. A kinetic model of clay mineral transformation in overpressure setting and its applications[J]. Acta Sedimentologica Sinica, 2006,24 (4): 461-467.
[29] 孟元林,许丞,谢洪玉,等. 超压背景下自生石英形成的化学动力学模型[J]. 石油勘探与开发,2013,40 (6): 701-707. MENG Yuanlin,XU Cheng,XIE Hongyu,et al. A new kinetic model for authigenic quartz formation under overpressure[J]. Petroleum Exploration and Development,2013,40 (6): 701-707.
[30] 税蕾蕾,郭来源,徐新德,等. 莺歌海盆地乐东10区CO2包裹体特征及其流体充注史[J].石油实验地质,2021,43 (5): 835-843. SHUI Leilei,GUO Laiyuan,XU Xinde,et al. Fluid charging history in Ledong 10 area,Yinggehai Basin,revealed by CO2 inclusion characteristics[J]. Petroleum Geology & Experiment, 2021,43 (5): 835-843.
[31] 蒋恕,蔡东升,朱筱敏,等. 辽河坳陷辽中凹陷成岩作用与中深层孔隙演化[J]. 石油与天然气地质,2007,28 (3): 362-369. JIANG Shu,CAI Dongsheng,ZHU Xiaomin,et al. Diagenesis of Liaozhong sag in Liaohe depression and pore evolution in its middle-deep strata[J]. Oil & Gas Geology,2007,28 (3): 362-369.
[32] 金振奎,刘春慧. 黄骅坳陷北大港构造带储集层成岩作用定量研究[J]. 石油勘探与开发,2008,35 (5): 581-587. JIN Zhenkui,LIU Chunhui. Quantitative study on reservoir diagenesis in northern Dagang structural belt,Huanghua Depression[J]. Petroleum Exploration and Development,2008,35 (5): 581-587.
[33] 王瑞飞,孙卫. 储层沉积-成岩过程中物性演化的主控因素[J]. 矿物学报,2009,29 (3): 399-404. WANG Ruifei,SUN Wei. Main factors controlling the evolution of physical properties during the process of reservoir sedimentation-diagenesis[J]. Acta Mineralogica Sinica,2009,29 (3): 399-404.
[34] MARFIL R,SCHERER M,TURRERO M J. Diagenetic processes influencing porosity in sandstones from the Triassic Buntsandstein of the Iberian Range,Spain[J]. Sedimentary Geology, 1996,105 (3/4): 203-219.
[35] ISLAM M A. Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas gas field,Bengal Basin,Bangladesh[J]. Journal of Asian Earth Sciences,2009,35 (1): 89-100.
[36] WOLELA A. Diagenetic evolution and reservoir potential of the Barremian-Cenomanian Debre Libanose Sandstone,Blue Nile (Abay) Basin,Ethiopia[J]. Cretaceous Research,2012,36: 83-95.
[37] 姜平,王珍珍,邹明生,等. 文昌A凹陷珠海组砂岩碳酸盐胶结物发育特征及其对储层质量的影响[J]. 地球科学,2021, 46 (2): 600-620. JIANG Ping,WANG Zhenzhen,ZOU Mingsheng,et al. Development characteristics of carbonate cement and its influence on reservoir quality in the sandstones from the Zhuhai Formation in the Wenchang A depression[J]. Earth Science,2021,46 (2): 600-620.
[38] BEARD D C,WELY P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin,1973, 57 (2): 349-369.
[39] 柳波,吕延防,赵荣,等. 三塘湖盆地马朗凹陷芦草沟组泥页岩系统地层超压与页岩油富集机理[J]. 石油勘探与开发, 2012,39 (6): 699-705. LIU Bo,LÜ Yanfang,ZHAO Rong,et al. Formation overpressure and shale oil enrichment in the shale system of Lucaogou Formation,Malang Sag,Santanghu Basin,NW China[J]. Petroleum Exploration and Development,2012,39 (6): 699-705.
[40] 胡作维,李云,黄思静,等. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展,2012,27 (1): 14-25. HU Zuowei,LI Yun,HUANG Sijing,et al. Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J]. Advances in Earth Sciences,2012,27 (1): 14-25.
[41] 李伟,刘平,艾能平,等. 莺歌海盆地乐东地区中深层储层发育特征及成因机理[J]. 岩性油气藏,2020,32 (1): 19-26. LI Wei,LIU Ping,AI Nengping,et al. Development characteristics and genetic mechanism of med-deep reservoirs in Ledong area,Yinggehai Basin[J]. Lithologic Reservoirs,2020,32 (1): 19-26.
[42] 罗静兰,罗晓容,白玉彬,等. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响: 以鄂尔多斯盆地西南部长7 致密浊积砂岩储层为例[J]. 地球科学与环境学报,2016,38 (1): 79-92. LUO Jinglan,LUO Xiaorong,BAI Yubin,et al. Impact of differential diagenetic evolution on the chronological tightening and pore evolution of tight sandstone reservoirs: A case study from the Chang-7 tight turbidite sandstone reservoir in the southwestern Ordos Basin[J]. Journal of Earth Sciences and Environment,2016,38 (1): 79-92.
[1] 范彩伟, 贾茹, 柳波, 付晓飞, 侯静娴, 靳叶军. 莺歌海盆地中央坳陷带成藏体系的盖层评价及控藏作用[J]. 岩性油气藏, 2023, 35(1): 36-48.
[2] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[3] 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151.
[4] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[5] 周东红, 谭辉煌, 张生强. 渤海海域垦利6-1油田新近系复合河道砂体地震描述技术[J]. 岩性油气藏, 2022, 34(4): 13-21.
[6] 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52.
[7] 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103.
[8] 杨水胜, 王汇智, 闫骁龙, 付国民. 鄂尔多斯盆地中南部侏罗系直罗组流体包裹体特征[J]. 岩性油气藏, 2021, 33(6): 39-47.
[9] 杨丽莎, 陈彬滔, 马轮, 史忠生, 薛罗, 王磊, 史江龙, 赵艳军. 陆相湖盆坳陷期源—汇系统的要素特征及耦合关系——以南苏丹Melut盆地北部坳陷新近系Jimidi组为例[J]. 岩性油气藏, 2021, 33(3): 27-38.
[10] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[11] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[12] 张艳, 高世臣, 孟婉莹, 成育红, 蒋思思. 致密砂岩储层AVO正演模拟过程中的不确定性分析[J]. 岩性油气藏, 2020, 32(6): 120-128.
[13] 张鹏, 杨巧云, 范宜仁, 张云, 张海涛. 基于Xu-White模型的致密砂岩储层含气性评价[J]. 岩性油气藏, 2020, 32(6): 138-145.
[14] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[15] 王德英, 于娅, 张藜, 史盼盼. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J]. 岩性油气藏, 2020, 32(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[2] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[3] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[4] 车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1): 121 -132 .
[5] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .
[6] 石兰亭, 李本才, 巩固, 李楠, 丁冶. 断陷型盆地温压系统与油气成藏——以伊通地堑莫里青断陷为例[J]. 岩性油气藏, 2007, 19(1): 73 -76 .
[7] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[8] 王飞, 胥元刚, 万玲侠, 张和斌. 抗盐耐温颗粒调驱剂在文南油田的应用[J]. 岩性油气藏, 2007, 19(4): 121 -127 .
[9] 李先鹏. 泥质地层中饱和度指数的确定[J]. 岩性油气藏, 2008, 20(2): 83 -85 .
[10] 冯有良. 大民屯凹陷沙四段—沙三段层序地层格架及岩性油气藏预测[J]. 岩性油气藏, 2008, 20(4): 14 -19 .