岩性油气藏 ›› 2022, Vol. 34 ›› Issue (5): 152–161.doi: 10.12108/yxyqc.20220513

• 石油工程与油气田开发 • 上一篇    下一篇

渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验

马奎前, 刘东, 黄琴   

  1. 中海石油(中国)有限公司天津分公司, 天津 300459
  • 收稿日期:2021-09-02 修回日期:2022-06-11 出版日期:2022-09-01 发布日期:2022-09-06
  • 第一作者:马奎前(1971-),男,教授级高级工程师,主要从事油气田开发研究方面的工作。地址:(300459)天津市滨海新区塘沽海川路2121号。Email:makq@cnooc.com.cn。
  • 基金资助:
    “十三五”国家科技重大专项“渤海油田高效开发示范工程”(编号:2016ZX05058)和中海石油(中国)有限公司天津分公司综合科研项目“绥中36-1/旅大5-2水驱后注热机理研究及应用”(编号:ZZKY-2020-TJ-08)联合资助

Physical simulation experiment of steam flooding in horizontal wells of Neogene heavy oil reservoir in Lvda oilfield,Bohai Sea

MA Kuiqian, LIU Dong, HUANG Qin   

  1. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China
  • Received:2021-09-02 Revised:2022-06-11 Online:2022-09-01 Published:2022-09-06

摘要: 对渤海海域旅大油田新近系典型稠油油藏开展水平井蒸汽驱油物理模拟实验,利用长填砂管模型分析了蒸汽温度、注入速度和原油黏度对蒸汽驱油效果的影响,探讨了蒸汽驱油不同生产阶段的动态特征、温度场的变化规律以及蒸汽驱油机理。研究结果表明:①蒸汽驱油物理模拟实验采用长岩心单管模型,设置模型内径为2.5 cm,长度为50.0 cm,填砂后模型孔隙度为35.0%,渗透率为4 500 mD,设置蒸汽干度为0.7,注汽温度为250℃,注汽速度为6 mL/min,驱油效率可达82.52%。②研究区蒸汽驱油过程分为启动、稳定驱替、蒸汽突破和蒸汽剥蚀4个阶段;注、采水平井间蒸汽腔温度场扩展不均衡,水平井底部温度扩展速度快,顶部温度扩展速度慢,在启动和稳定驱替阶段温度场呈“三角形”推进模式,蒸汽突破和剥蚀阶段蒸汽腔温度场沿对角线扩展,速度减小;蒸汽驱替阶段采出程度为51.86%,稳定驱替阶段为主要的产油阶段,采出程度为39.06%。③热力降黏是旅大油田蒸汽驱油最主要的机理,高温蒸汽的剥蚀作用、蒸馏效应、微观波及效率的提高等也影响驱油效率。

关键词: 蒸汽驱油, 热力降黏, 蒸汽剥蚀, 物理模拟实验, 稠油油藏, 新近系, 旅大油田, 渤海

Abstract: A physical simulation experiment of steam flooding in horizontal wells was carried out on a typical heavy oil reservoir of Neogene in Lvda oilfield,Bohai Sea. The long sand-packing tube model was used to analyze the effects of steam temperature,injection rate and oil viscosity on the steam flooding effect. The dynamic characteristics of steam flooding in different production stages,the variation of temperature and the mechanism of steam flooding were discussed. The results show that:(1)The physical simulation experiment of steam flooding adopts a long core single tube model,with an inner diameter of 2.5 cm and a length of 50.0 cm. After sand filling, the porosity of the model is 35.0%,the permeability is 4 500 mD,and the steam dryness is 0.7. The steam injection temperature is 250℃,the steam injection rate is 6 mL/min,and the oil displacement efficiency can reach 82.52%.(2)The steam flooding process in the study area can be divided into four stages:start-up,stable flooding, steam breakthrough and steam denudation. The temperature field of the steam chamber between the injection and production horizontal wells is not balanced,the temperature at the bottom of the horizontal well expands rapidly, and the temperature at the top expands slowly. During the start-up and stable flooding stages,the temperature field presents a "triangular" advancing mode. The temperature field of the steam chamber expands along the diagonal in the steam breakthrough and denudation stages. The recovery percent in the steam flooding stage is 51.86%, the stable flooding stage is the main oil production stage,and the recovery percent is 39.06%.(3)Thermal viscosity reduction is the main mechanism of steam flooding in Lvda oilfield. The denudation of high-temperature steam, distillation effect,and the improvement of microscopic sweep efficiency also affect the oil displacement efficiency.

Key words: steam flooding, thermal viscosity reduction, steam denudation, physical simulation experiment, heavy oil reservoir, Neogene, Lvda oilfield, Bohai Sea

中图分类号: 

  • TE345
[1] 朱如凯,崔景伟,毛治国,等. 地层油气藏主要勘探进展及未来重点领域[J]. 岩性油气藏,2021,33(1):12-24. ZHU Rukai,CUI Jingwei,MAO Zhiguo,et al. Main explora- tion progress and future key fields of stratigraphic reservoirs[J]. Lithologic Reservoirs,2021,33(1):12-24.
[2] 李萍,刘志龙,邹剑,等. 渤海旅大27-2油田蒸汽吞吐先导试验注采工程[J]. 石油学报,2016,37(2):242-247. LI Ping,LIU Zhilong,ZOU Jian,et al. Injection and production project of pilot test on steam huff-puff in oilfield LD27-2,Bohai sea[J]. Acta Petrolei Sinica,2016,37(2):242-247.
[3] 户昶昊. 中深层稠油油藏蒸汽驱技术研究进展与发展方向[J]. 特种油气藏,2020,27(6):54-59. HU Changhao. Research progress and development direction of steam flooding technology for medium and deep heavy oil reservoirs[J]. Special Oil & Gas Reservoirs,2020,27(6):54-59.
[4] 张运来,廖新武,胡勇,等. 海上稠油油田高含水期开发模式研究[J]. 岩性油气藏,2018,30(4):120-126. ZHANG Yunlai,LIAO Xinwu,HU Yong,et al. Development models for offshore heavy oil field in high water cut stage[J]. Lithologic Reservoirs,2018,30(4):120-126.
[5] 李相方,马宏斌,杨戬,等. 蒸汽驱机理再认识及全生命周期开发研究[J]. 特种油气藏,2020,27(6):67-74. LI Xiangfang,MA Hongbin,YANG Jian,et al. Reunderstanding of steam flooding mechanism and research on full life cycle development[J]. Special Oil & Gas Reservoirs,2020,27(6):67-74.
[6] 田鸿照,孙野. 直井与水平井组合吞吐转汽驱操作参数优选[J]. 岩性油气藏,2013,25(3):127-130. TIAN Hongzhao,SUN Ye. Operation parameters optimization of steam flooding with the combination of vertical and horizon- tal wells[J]. Lithologic Reservoirs,2013,25(3):127-130.
[7] PANG Zhanxi,WANG Luting,YIN Fanghao,et al. Steam chamber expanding processes and bottom water invading characteris- tics during steam flooding in heavy oil reservoirs[J]. Energy, 2021,234:121214.
[8] 邹剑,张华,刘建斌,等. 旅大27-2油田稠油油藏流体流动性影响因素[J]. 科学技术与工程,2020,20(23):9308-9313. ZOU Jian,ZHANG Hua,LIU Jianbin,et al. Fluid fluidity affecting factors on heavy oil reservoirs in LD27-2 oilfield[J]. Sci- ence Technology and Engineering,2020,20(23):9308-9313.
[9] 郭玲玲,刘涛,刘影,等. 蒸汽驱中-后期间歇注热理论模型与现场试验[J]. 石油学报,2019,40(7):823-829. GUO Lingling,LIU Tao,LIU Ying,et al. Theoretical model and field test of intermittent heat injection in the middle and late stage of steam flooding[J]. Acta Petrolei Sinica,2019,40(7):823-829.
[10] 张孝燕. 杜84块中深层薄互层超稠油蒸汽驱实施研究[J]. 非常规油气,2020,7(4):60-66. ZHANG Xiaoyan. Study on steam flooding of super heavy oil with thin interbed in middle and deep layers in block Du 84[J]. Unconventional Oil & Gas,2020,7(4):60-66.
[11] 赵庆辉,张鸿,杨兴超,等. 深层超稠油油藏蒸汽吞吐后转汽驱实验研究[J]. 西南石油大学学报(自然科学版),2021,43(3):146-154. ZHAO Qinghui,ZHANG Hong,YANG Xingchao,et al. An ex- perimental study on steam flooding after huff and puff in deep su- per heavy oil reservoir[J]. Journal of Southwest Petroleum Uni- versity(Science & Technology Edition),2021,43(3):146-154.
[12] 王学忠. 多轮次蒸汽吞吐井开发接替技术研究[J]. 当代石油石化,2019,27(6):30-34. WANG Xuezhong. Research on development replacement technology of multi-cycle steam huff and puff wells[J]. Petroleum & Petrochemical Today,2019,27(6):30-34.
[13] 张风义,王树涛,刘东,等. 超临界蒸汽开发特稠油提高采收率机理实验研究[J]. 石油钻采工艺,2020,42(2):242-246. ZHANG Fengyi,WANG Shutao,LIU Dong,et al. Experimental study on the EOR mechanisms of developing extra heavy oil by supercritical steam[J]. Oil Drilling & Petroleum Technology, 2020,42(2):242-246.
[14] 王树涛,张风义,刘东,等. 海上特稠油超临界蒸汽驱物模数模一体化研究[J]. 特种油气藏,2020,27(2):138-144. WANG Shutao,ZHANG Fengyi,LIU Dong,et al. Physicalnumerical simulation integration of super-critical steam-flooding in offshore extra-heavy oil reservoir[J]. Special Oil & Gas Reservoirs,2020,27(2):138-144.
[15] 贾大雷. 水平井蒸汽驱注气参数优化实验[J]. 承德石油高等专科学校学报,2019,21(5):24-26. JIA Dalei. Optimization experiment of steam injection for steam flooding in horizontal wells[J]. Journal of Chengde Petroleum College,2019,21(5):24-26.
[16] 蔡晖,屈丹,陈民锋. 组合井网储量动用规律及水平井加密合理技术策略:以渤海HD油田为例[J]. 岩性油气藏,2021,33(4):147-155. CAI Hui,QU Dan,CHEN Minfeng. Reserve producing law of combined well pattern and technology strategy of horizontal well infilling:A case study from HD oilfield in Bohai Sea[J]. Lithologic Reservoirs,2021,33(4):147-155.
[17] 吴淑红,李秀娈,于立君. 原油蒸汽蒸馏作用对蒸汽驱开发效果的影响[J]. 特种油气藏,2002,9(1):27-29. WU Shuhong,LI Xiuluan,YU Lijun. Effect of steam distillation of crude oil on steam drive[J]. Special Oil & Gas Reservoirs, 2002,9(1):27-29.
[18] 高孝田,吴官生,沈德煌,等. 稠油油藏过热蒸汽驱蒸馏作用机理试验研究[J]. 石油天然气学报,2010,32(3):344-346. GAO Xiaotian,WU Guansheng,SHEN Dehuang,et al. The mechanism and experimental study on the distillation of super- heated steam in heavy oil reservoirs[J]. Journal of Oil and Gas Technology,2010,32(3):344-346.
[19] 王立辉,夏惠芬,韩培慧,等. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏,2021,33(2):147-154. WANG Lihui,XIA Huifen,HAN Peihui,et al. Microscopic characteristics of remaining oil distribution and quantitative characterization of its producibility[J]. Lithologic Reservoirs, 2021,33(2):147-154.
[20] 张洪宝,刘永建,塔耀晶,等. 稠油油藏氮气辅助蒸汽驱室内实验[J]. 断块油气田,2020,27(5):624-627. ZHANG Hongbao,LIU Yongjian,TA Yaojing,et al. Laboratory experiment of nitrogen assisted steam flooding in heavy oil reservoir[J]. Fault-Block Oil & Gas Field,2020,27(5):624-627.
[1] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[2] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[3] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[4] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[5] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[6] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[7] 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107.
[8] 钱真, 毛志强, 郑伟, 黄远军, 陈立峰, 曾慧勇, 李岗, 宋嫒. 井间单套缝洞型油藏橡胶颗粒调剖堵水实验[J]. 岩性油气藏, 2023, 35(4): 161-168.
[9] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60.
[10] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[11] 杨润泽, 赵贤正, 刘海涛, 李宏军, 赵长毅, 蒲秀刚. 渤海湾盆地黄骅坳陷古生界源内和源下油气成藏特征及有利区预测[J]. 岩性油气藏, 2023, 35(3): 110-125.
[12] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[13] 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95.
[14] 邓美玲, 王宁, 李新琦, 陈容涛, 刘岩, 徐耀辉. 渤海莱州湾凹陷中部古近系沙三段烃源岩地球化学特征及沉积环境[J]. 岩性油气藏, 2023, 35(1): 49-62.
[15] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .