岩性油气藏 ›› 2023, Vol. 35 ›› Issue (4): 161–168.doi: 10.12108/yxyqc.20230415

• 石油工程与油气田开发 • 上一篇    

井间单套缝洞型油藏橡胶颗粒调剖堵水实验

钱真1,2, 毛志强3,4, 郑伟5, 黄远军1,2, 陈立峰3,4, 曾慧勇3,4, 李岗3,4, 宋嫒3,4   

  1. 1. 中国石化西北油田分公司 石油工程技术研究院, 乌鲁木齐 830011;
    2. 中国石油化工集团公司 碳酸盐岩缝洞型油藏提高采收率重点实验室, 乌鲁木齐 830011;
    3. 油气钻采工程湖北省重点实验室, 武汉 430100;
    4. 长江大学 油气钻完井技术国家工程研究中心, 武汉 430100;
    5. 中海油研究总院, 北京 100028
  • 收稿日期:2022-07-19 修回日期:2022-09-30 出版日期:2023-07-01 发布日期:2023-07-01
  • 第一作者:钱真(1985-),男,硕士,工程师,主要从事碳酸盐岩油藏提高采收率技术研究工作。地址:(830011) 新疆乌鲁木齐市新市区466号。Email:q7102777@163.com。
  • 通信作者: 毛志强(1999-),男,长江大学在读硕士研究生,研究方向为油田化学和提高采收率技术。Email:mzq1183250147@163.com。
  • 基金资助:
    国家自然科学基金项目“热敏聚合物纳米流体高温触变机制研究”(编号:52074038)资助。

Experiment on profile control and water plugging of rubber particles in inter-well single fractured-vuggy reservoir

QIAN Zhen1,2, MAO Zhiqiang3,4, ZHENG Wei5, HUANG Yuanjun1,2, CHEN Lifeng3,4, ZENG Huiyong3,4, LI Gang3,4, SONG Ai3,4   

  1. 1. Research Institute of Petroleum Engineering and Technology, Sinopec Northwest Oilfield Company, Urumqi 830011, China;
    2. Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-Vuggy Reservoirs, Sinopec, Urumqi 830011, China;
    3. Key Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei Province, Wuhan 430100, China;
    4. National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China;
    5. CNOOC Research Institute Co., Ltd., Beijing 100028, China
  • Received:2022-07-19 Revised:2022-09-30 Online:2023-07-01 Published:2023-07-01

摘要: 以塔河油田井间单套缝洞型油藏为模型基础,设计了橡胶颗粒调流剂堵水物理模拟驱替实验,对水驱规律进行了分析,并探讨了不同的封堵位置、橡胶颗粒用量、粒径、密度以及注水速度对驱替效果的影响。研究结果表明: ①模拟实验设置模型长度为40 cm,宽度为30 cm,厚度为5 cm,裂缝开度为4~20 mm,溶洞直径为2~4 cm,井筒宽度为10 mm,模型缝洞体积为175 mL,在温度为25℃、常压时,以10 mL/min的速度注水驱替至采油井含水率达到98%时的最终采出程度为43.83%;由于重力分异作用,注水驱替后存在大量的阁楼油和绕流油,阁楼油主要集中在横向顶部通道,绕流油主要集中在横向中部通道和横向底部通道的高位,油水界面与横向中部通道的高位缝齐平。②模拟实验中同时封堵横向底部通道和横向中部通道,橡胶颗粒采用混合粒径,颗粒密度和模拟地层水密度一致,用量越大,注水速度越大,调流效果越好;橡胶颗粒用量为0.04 PV,粒径小于1 mm和2~4 mm的颗粒各半,注水速度为15 mL/min时,采出程度提高了18.45%;同时注入水以及与水等密度的橡胶颗粒,可有效封堵优势通道,效果较好。③在TH25X井进行橡胶颗粒调剖堵水现场实验中,设置前置段塞橡胶颗粒粒径为2~4 mm,后置段塞橡胶颗粒粒径小于1 mm,颗粒密度为1.13 g/cm3,以50 m3/d的速度同时注入水和橡胶颗粒共920 m3,堵水后累计增油1 200 t,含水率下降15%,取得较好封堵效果。

关键词: 井间单套结构, 缝洞型油藏, 调剖堵水, 物理模拟实验, 水驱规律, 橡胶颗粒, 随机调流, 塔河油田

Abstract: Based on the model of a single-seam fractured-vuggy reservoir between wells in Tahe Oilfield,a physical simulation and displacement experiment of water plugging by rubber particle flow regulating agent was designed, the law of water flooding was analyzed,and the effects of different blocking locations,rubber particle dosage, particle size,density and injection rate on the displacement effect were discussed. The results show that:(1)The model length is 40 cm, the width is 30 cm, the thickness is 5 cm, the crack opening to is 4-20 mm, the cave diameter is 2-4 cm,the width of the wellbore is 10 mm,the crack volume of the model is 175 mL. At a temperature of 25 ℃ and atmospheric pressure,and at a water injection rate of 10 mL / min,the final degree of recovery is 43.83% when the water content of the production well reaches 98% by water injection at the rate of 10 mL/min. Due to gravity differentiation, there is a large amount of attic oil and bypass oil after water flooding, attic oil is mainly concentrated in the transverse top channel,bypass oil is mainly concentrated in the high position of the transverse middle channel and the transverse bottom channel,and the oil-water interface is flush with the high seam of the transverse middle channel.(2)In the simulation experiment,the transverse bottom channel and the transverse middle channel were blocked at the same time. The rubber particles were mixed in particle size,and the particle density is consistent with the density of the simulated formation water. The larger the amount,the greater the injection rate,and the better the flow regulation effect. When the amount of rubber particles was 0.04 PV,the particle size was less than 1 mm and 2-4 mm, and the injection rate was 15 mL/min, the recovery rate increased by 18.45%. Rubber particles with the same density as formation water can be carried and transported to the desired blocking position by injecting water,and the water blocking effect is better.(3)In the field experiment of rubber particle profile control and water plugging in well TH25X,The rubber particle size of the front section plug is 2-4 mm,the rubber particle size of the rear section plug is less than 1 mm,and the particle density is 1.13 g/cm3. Water and rubber particles were injected simultaneously at the rate of 50 m3/d, and the total amount is 920 m3. After water plugging, the cumulative oil increase is 1 200 t, and the water content decreases by 15%, achieving good plugging effect.

Key words: inter-well single structure, fractured-vuggy reservoir, profile control and water plugging, physical simulation experiment, water flooding law, rubber particles, random flow regulation, Tahe Oilfield

中图分类号: 

  • TE358.3
[1] 李阳,侯加根,李永强.碳酸盐岩缝洞型储集体特征及分类分级地质建模[J].石油勘探与开发, 2016, 43(4):600-606. LI Yang, HOU Jiagen, LI Yongqiang. Features and hierarchical modeling of carbonate fracture-cavity reservoirs[J]. Petroleum Exploration and Development, 2016, 43(4):600-606.
[2] 毛志强,张雯,吴春洲,等.纵向双层缝洞油藏橡胶颗粒调流适应性[J].岩性油气藏, 2021, 33(5):172-180. MAO Zhiqiang, ZHANG Wen, WU Chunzhou, et al. Flow regulation adaptability of rubber particles in longitudinal double-layer fractured-vuggy reservoirs[J]. Lithologic Reservoirs, 2021, 33(5):172-180.
[3] 宋传真,马翠玉.塔河油田奥陶系缝洞型油藏油水流动规律[J].岩性油气藏, 2022, 34(4):150-158. SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield[J]. Lithologic Reservoirs, 2022, 34(4):150-158.
[4] 杨祖国,艾克热木·牙生,高秋英,等.高矿化度缝洞型油藏用棉籽油-硫磺基密度可调颗粒调流剂的研发[J].油田化学, 2020, 37(2):212-217. YANG Zuguo, YASHENG Aikeremu, GAO Qiuying, et al. The cottonseed oil/sulfur based density adjustable particle agent applied in high salinity fractured-vuggy reservoir for fluid diversion[J]. Oilfield Chemistry, 2020, 37(2):212-217.
[5] 杨美华,钟海全,李颖川.缝洞型碳酸盐岩油藏新型油藏生产指示曲线[J].岩性油气藏, 2021, 33(2):163-170. YANG Meihua, ZHONG Haiquan, LI Yingchuan. New production index curve of fractured-vuggy carbonate reservoirs[J]. Lithologic Reservoirs, 2021, 33(2):163-170.
[6] 葛丽珍,孟智强,朱志强,等.气顶边水油藏初期合理采油速度三维物理模拟实验[J].中国海上油气, 2019, 31(6):99-105. GE Lizhen, MENG Zhiqiang, ZHU Zhiqiang, et al. Three-dimensional physical simulation experiment of reasonable initial oil recovery rate for the gas cap/edge water reservoirs[J]. China Offshore Oil and Gas, 2019, 31(6):99-105.
[7] 张继春,张津海,杨延辉,等.潜山裂缝油藏降压开采增油机理及现场试验[J].石油学报, 2004, 25(1):52-56. ZHANG Jichun, ZHANG Jinhai, YANG Yanhui, et al. Mechanism of depressurization development of fractured reservoirs for enhancing oil production and in situ experiment[J]. Acta Petrolei Sinica, 2004, 25(1):52-56.
[8] CHEN Xin, LI Yiqiang, LIU Zheyu, et al. Investigation on matching relationship and plugging mechanism of self-adaptive microgel (SMG) as a profile control and oil displacement agent[J]. Powder Technology, 2020, 364:774-784.
[9] YANG Hongbing, ZHOU Bobo, ZHU Tongyu, et al. Conformance control mechanism of low elastic polymer microspheres in porous medium[J]. Journal of Petroleum Science and Engineering, 2020, 196:107708.
[10] 王敏,赵国良,孙天建,等.分汊与游荡型辫状河隔夹层层次结构特征[J].西南石油大学学报(自然科学版), 2017, 39(6):69-77. WANG Min, ZHAO Guoliang, SUN Tianjian, et al. Hierarchy characterization of intercalations in branching-based and wandering-based braded river reservoirs[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2017, 39(6):69-77.
[11] LIN Meiqin, ZHANG Guiqing, HUA Zhao, et al. Conformation and plugging properties of crosslinked polymer microspheres for profile control[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 477:49-54.
[12] 任文博.流势调控在缝洞型碳酸盐岩油藏控水稳油中的应用[J].岩性油气藏, 2019, 31(6):127-134. REN Wenbo. Application of flow potential control in water control and oil stabilization of fractured-vuggy carbonate reservoirs[J]. Lithologic Reservoirs, 2019, 31(6):127-134.
[13] 王成文,王瑞和,程荣超,等.溶洞-裂缝型复杂井堵漏新型触变水泥体系研究[J].中国石油大学学报(自然科学版), 2007, 31(5):48-50. WANG Chengwen, WANG Ruihe, CHENG Rongchao, et al. Investigation on new thixotropic cement system for lost circulation control in vug-fracture type complex wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(5):48-50.
[14] YUAN Chengdong,PU Wanfen,JIN Fayang,et al. Performance of oil-based cement slurry as a selective water-plugging agent in high-temperature and high-salinity cave-fractured carbonate reservoirs[J]. Industrial&Engineering Chemistry Research, 2014, 53(14):6137-6149.
[15] 车洪昌,任耀宇,刘汉平,等.龙虎泡油田活性水驱油室内实验研究[J].岩性油气藏, 2011, 23(2):128-132. CHE Hongchang, REN Yaoyu, LIU Hanping, et al. Laboratory study on oil displacement with active water in Longhupao Oilfield[J]. Lithologic Reservoirs, 2011, 23(2):128-132.
[16] DU Guangyan, PENG Yuanyuan, PEI Yuxin, et al. Thermo-responsive temporary plugging agent based on multiple phase transition supramolecular gel[J]. Energy&Fuels, 2017, 31(9):9283-9289.
[17] ZHANG Yi, CAI Hongyan, LI Jiangguo, et al. Experimental study of acrylamide monomer polymer gel for water plugging in low temperature and high salinity reservoir[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2018, 40(24):1-12.
[18] 曹伟佳,卢祥国,张云宝,等.淀粉接枝共聚物凝胶堵水效果及作用机理研究[J].油气藏评价与开发, 2019, 9(1):44-50. CAO Weijia, LU Xiangguo, ZHANG Yunbao, et al. Study on water plugging effect and mechanism of starch graft copolymer gel[J]. Reservoir Evaluation and Development, 2019, 9(1):44-50.
[19] 吴刚,余吉良,林岳华,等.高温凝胶深部调剖剂的研究及在华北油田西柳10断块的应用[J].石油钻采工艺, 2012, 34(1):100-102. WU Gang, YU Jiliang, LIN Yuehua, et al. Research and uses of high-temperature gel deep modified profile agent in Fault 10 Xiliu Huabei Oilfield[J]. Oil Drilling and Production Technology, 2012, 34(1):100-102.
[20] 赵光,戴彩丽,由庆.冻胶分散体软体非均相复合驱油体系特征及驱替机理[J].石油勘探与开发, 2018, 45(3):464-473. ZHAO Guang, DAI Caili, YOU Qing. Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system[J]. Petroleum Exploration and Development, 2018, 45(3):464-473.
[21] 徐婷,李秀生,张学洪,等.聚合物驱后提高原油采收率平行管试验研究[J].石油勘探与开发, 2004, 31(6):98-100. XU Ting, LI Xiusheng, ZHANG Xuehong, et al. Parallel-column experiments for enhancing oil recovery after Polymer flooding[J]. Petroleum Exploration and Development, 2004, 31(6):98-100.
[1] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[2] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[3] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[4] 毛志强, 张雯, 吴春洲, 陈立峰, 陈亚东, 李岗, 曾慧勇, 刘靓. 纵向双层缝洞油藏橡胶颗粒调流适应性[J]. 岩性油气藏, 2021, 33(5): 172-180.
[5] 苑雅轩, 樊太亮, 苑学军, 张赫航, 汪佳蓓, 罗成, 闫昕宇. 塔河油田蓬莱坝组异常地震特征及地质成因分析[J]. 岩性油气藏, 2018, 30(6): 98-108.
[6] 王珂,戴俊生,贾开富,刘海磊. 塔河油田 1 区三叠系储层流动单元研究[J]. 岩性油气藏, 2014, 26(3): 119-124.
[7] 葛善良,王 英,曹 阳,于 雷. 塔河油田西部深层微幅构造综合评价[J]. 岩性油气藏, 2013, 25(4): 63-67.
[8] 刘洪,任路,胡治华. 缝洞型油藏钻遇溶洞油井的压力曲线特征[J]. 岩性油气藏, 2012, 24(2): 124-128.
[9] 刘海磊,戴俊生,尹鹤,贾开富. 塔河油田1 区三叠系隔夹层研究[J]. 岩性油气藏, 2011, 23(5): 121-126.
[10] 李子甲,张志强,付国民. 塔河油田AT1 区三叠系中油组储层成岩作用及其对物性影响[J]. 岩性油气藏, 2011, 23(1): 34-38.
[11] 祝贺,孟万斌,曾海燕,杨永剑. 托甫台地区奥陶系碳酸盐岩储层特征及控制因素分析[J]. 岩性油气藏, 2010, 22(Z1): 54-59.
[12] 马洪涛,蔡 明,付国民. 塔河油田AT1井区中三叠统中油组湖底扇沉积特征研究[J]. 岩性油气藏, 2010, 22(3): 53-58.
[13] 陆燕妮,邓勇,陈刚. 塔河油田缝洞型底水油藏临界产量计算研究[J]. 岩性油气藏, 2009, 21(4): 108-110.
[14] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115-119.
[15] 李柏林, 涂兴万, 李传亮. 塔河缝洞型碳酸盐岩底水油藏产量递减特征研究[J]. 岩性油气藏, 2008, 20(3): 132-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .