岩性油气藏 ›› 2023, Vol. 35 ›› Issue (4): 161168.doi: 10.12108/yxyqc.20230415
• 石油工程与油气田开发 • 上一篇
钱真1,2, 毛志强3,4, 郑伟5, 黄远军1,2, 陈立峰3,4, 曾慧勇3,4, 李岗3,4, 宋嫒3,4
QIAN Zhen1,2, MAO Zhiqiang3,4, ZHENG Wei5, HUANG Yuanjun1,2, CHEN Lifeng3,4, ZENG Huiyong3,4, LI Gang3,4, SONG Ai3,4
摘要: 以塔河油田井间单套缝洞型油藏为模型基础,设计了橡胶颗粒调流剂堵水物理模拟驱替实验,对水驱规律进行了分析,并探讨了不同的封堵位置、橡胶颗粒用量、粒径、密度以及注水速度对驱替效果的影响。研究结果表明: ①模拟实验设置模型长度为40 cm,宽度为30 cm,厚度为5 cm,裂缝开度为4~20 mm,溶洞直径为2~4 cm,井筒宽度为10 mm,模型缝洞体积为175 mL,在温度为25℃、常压时,以10 mL/min的速度注水驱替至采油井含水率达到98%时的最终采出程度为43.83%;由于重力分异作用,注水驱替后存在大量的阁楼油和绕流油,阁楼油主要集中在横向顶部通道,绕流油主要集中在横向中部通道和横向底部通道的高位,油水界面与横向中部通道的高位缝齐平。②模拟实验中同时封堵横向底部通道和横向中部通道,橡胶颗粒采用混合粒径,颗粒密度和模拟地层水密度一致,用量越大,注水速度越大,调流效果越好;橡胶颗粒用量为0.04 PV,粒径小于1 mm和2~4 mm的颗粒各半,注水速度为15 mL/min时,采出程度提高了18.45%;同时注入水以及与水等密度的橡胶颗粒,可有效封堵优势通道,效果较好。③在TH25X井进行橡胶颗粒调剖堵水现场实验中,设置前置段塞橡胶颗粒粒径为2~4 mm,后置段塞橡胶颗粒粒径小于1 mm,颗粒密度为1.13 g/cm3,以50 m3/d的速度同时注入水和橡胶颗粒共920 m3,堵水后累计增油1 200 t,含水率下降15%,取得较好封堵效果。
中图分类号:
[1] 李阳,侯加根,李永强.碳酸盐岩缝洞型储集体特征及分类分级地质建模[J].石油勘探与开发, 2016, 43(4):600-606. LI Yang, HOU Jiagen, LI Yongqiang. Features and hierarchical modeling of carbonate fracture-cavity reservoirs[J]. Petroleum Exploration and Development, 2016, 43(4):600-606. [2] 毛志强,张雯,吴春洲,等.纵向双层缝洞油藏橡胶颗粒调流适应性[J].岩性油气藏, 2021, 33(5):172-180. MAO Zhiqiang, ZHANG Wen, WU Chunzhou, et al. Flow regulation adaptability of rubber particles in longitudinal double-layer fractured-vuggy reservoirs[J]. Lithologic Reservoirs, 2021, 33(5):172-180. [3] 宋传真,马翠玉.塔河油田奥陶系缝洞型油藏油水流动规律[J].岩性油气藏, 2022, 34(4):150-158. SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield[J]. Lithologic Reservoirs, 2022, 34(4):150-158. [4] 杨祖国,艾克热木·牙生,高秋英,等.高矿化度缝洞型油藏用棉籽油-硫磺基密度可调颗粒调流剂的研发[J].油田化学, 2020, 37(2):212-217. YANG Zuguo, YASHENG Aikeremu, GAO Qiuying, et al. The cottonseed oil/sulfur based density adjustable particle agent applied in high salinity fractured-vuggy reservoir for fluid diversion[J]. Oilfield Chemistry, 2020, 37(2):212-217. [5] 杨美华,钟海全,李颖川.缝洞型碳酸盐岩油藏新型油藏生产指示曲线[J].岩性油气藏, 2021, 33(2):163-170. YANG Meihua, ZHONG Haiquan, LI Yingchuan. New production index curve of fractured-vuggy carbonate reservoirs[J]. Lithologic Reservoirs, 2021, 33(2):163-170. [6] 葛丽珍,孟智强,朱志强,等.气顶边水油藏初期合理采油速度三维物理模拟实验[J].中国海上油气, 2019, 31(6):99-105. GE Lizhen, MENG Zhiqiang, ZHU Zhiqiang, et al. Three-dimensional physical simulation experiment of reasonable initial oil recovery rate for the gas cap/edge water reservoirs[J]. China Offshore Oil and Gas, 2019, 31(6):99-105. [7] 张继春,张津海,杨延辉,等.潜山裂缝油藏降压开采增油机理及现场试验[J].石油学报, 2004, 25(1):52-56. ZHANG Jichun, ZHANG Jinhai, YANG Yanhui, et al. Mechanism of depressurization development of fractured reservoirs for enhancing oil production and in situ experiment[J]. Acta Petrolei Sinica, 2004, 25(1):52-56. [8] CHEN Xin, LI Yiqiang, LIU Zheyu, et al. Investigation on matching relationship and plugging mechanism of self-adaptive microgel (SMG) as a profile control and oil displacement agent[J]. Powder Technology, 2020, 364:774-784. [9] YANG Hongbing, ZHOU Bobo, ZHU Tongyu, et al. Conformance control mechanism of low elastic polymer microspheres in porous medium[J]. Journal of Petroleum Science and Engineering, 2020, 196:107708. [10] 王敏,赵国良,孙天建,等.分汊与游荡型辫状河隔夹层层次结构特征[J].西南石油大学学报(自然科学版), 2017, 39(6):69-77. WANG Min, ZHAO Guoliang, SUN Tianjian, et al. Hierarchy characterization of intercalations in branching-based and wandering-based braded river reservoirs[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2017, 39(6):69-77. [11] LIN Meiqin, ZHANG Guiqing, HUA Zhao, et al. Conformation and plugging properties of crosslinked polymer microspheres for profile control[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 477:49-54. [12] 任文博.流势调控在缝洞型碳酸盐岩油藏控水稳油中的应用[J].岩性油气藏, 2019, 31(6):127-134. REN Wenbo. Application of flow potential control in water control and oil stabilization of fractured-vuggy carbonate reservoirs[J]. Lithologic Reservoirs, 2019, 31(6):127-134. [13] 王成文,王瑞和,程荣超,等.溶洞-裂缝型复杂井堵漏新型触变水泥体系研究[J].中国石油大学学报(自然科学版), 2007, 31(5):48-50. WANG Chengwen, WANG Ruihe, CHENG Rongchao, et al. Investigation on new thixotropic cement system for lost circulation control in vug-fracture type complex wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(5):48-50. [14] YUAN Chengdong,PU Wanfen,JIN Fayang,et al. Performance of oil-based cement slurry as a selective water-plugging agent in high-temperature and high-salinity cave-fractured carbonate reservoirs[J]. Industrial&Engineering Chemistry Research, 2014, 53(14):6137-6149. [15] 车洪昌,任耀宇,刘汉平,等.龙虎泡油田活性水驱油室内实验研究[J].岩性油气藏, 2011, 23(2):128-132. CHE Hongchang, REN Yaoyu, LIU Hanping, et al. Laboratory study on oil displacement with active water in Longhupao Oilfield[J]. Lithologic Reservoirs, 2011, 23(2):128-132. [16] DU Guangyan, PENG Yuanyuan, PEI Yuxin, et al. Thermo-responsive temporary plugging agent based on multiple phase transition supramolecular gel[J]. Energy&Fuels, 2017, 31(9):9283-9289. [17] ZHANG Yi, CAI Hongyan, LI Jiangguo, et al. Experimental study of acrylamide monomer polymer gel for water plugging in low temperature and high salinity reservoir[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2018, 40(24):1-12. [18] 曹伟佳,卢祥国,张云宝,等.淀粉接枝共聚物凝胶堵水效果及作用机理研究[J].油气藏评价与开发, 2019, 9(1):44-50. CAO Weijia, LU Xiangguo, ZHANG Yunbao, et al. Study on water plugging effect and mechanism of starch graft copolymer gel[J]. Reservoir Evaluation and Development, 2019, 9(1):44-50. [19] 吴刚,余吉良,林岳华,等.高温凝胶深部调剖剂的研究及在华北油田西柳10断块的应用[J].石油钻采工艺, 2012, 34(1):100-102. WU Gang, YU Jiliang, LIN Yuehua, et al. Research and uses of high-temperature gel deep modified profile agent in Fault 10 Xiliu Huabei Oilfield[J]. Oil Drilling and Production Technology, 2012, 34(1):100-102. [20] 赵光,戴彩丽,由庆.冻胶分散体软体非均相复合驱油体系特征及驱替机理[J].石油勘探与开发, 2018, 45(3):464-473. ZHAO Guang, DAI Caili, YOU Qing. Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system[J]. Petroleum Exploration and Development, 2018, 45(3):464-473. [21] 徐婷,李秀生,张学洪,等.聚合物驱后提高原油采收率平行管试验研究[J].石油勘探与开发, 2004, 31(6):98-100. XU Ting, LI Xiusheng, ZHANG Xuehong, et al. Parallel-column experiments for enhancing oil recovery after Polymer flooding[J]. Petroleum Exploration and Development, 2004, 31(6):98-100. |
[1] | 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168. |
[2] | 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161. |
[3] | 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158. |
[4] | 毛志强, 张雯, 吴春洲, 陈立峰, 陈亚东, 李岗, 曾慧勇, 刘靓. 纵向双层缝洞油藏橡胶颗粒调流适应性[J]. 岩性油气藏, 2021, 33(5): 172-180. |
[5] | 苑雅轩, 樊太亮, 苑学军, 张赫航, 汪佳蓓, 罗成, 闫昕宇. 塔河油田蓬莱坝组异常地震特征及地质成因分析[J]. 岩性油气藏, 2018, 30(6): 98-108. |
[6] | 王珂,戴俊生,贾开富,刘海磊. 塔河油田 1 区三叠系储层流动单元研究[J]. 岩性油气藏, 2014, 26(3): 119-124. |
[7] | 葛善良,王 英,曹 阳,于 雷. 塔河油田西部深层微幅构造综合评价[J]. 岩性油气藏, 2013, 25(4): 63-67. |
[8] | 刘洪,任路,胡治华. 缝洞型油藏钻遇溶洞油井的压力曲线特征[J]. 岩性油气藏, 2012, 24(2): 124-128. |
[9] | 刘海磊,戴俊生,尹鹤,贾开富. 塔河油田1 区三叠系隔夹层研究[J]. 岩性油气藏, 2011, 23(5): 121-126. |
[10] | 李子甲,张志强,付国民. 塔河油田AT1 区三叠系中油组储层成岩作用及其对物性影响[J]. 岩性油气藏, 2011, 23(1): 34-38. |
[11] | 祝贺,孟万斌,曾海燕,杨永剑. 托甫台地区奥陶系碳酸盐岩储层特征及控制因素分析[J]. 岩性油气藏, 2010, 22(Z1): 54-59. |
[12] | 马洪涛,蔡 明,付国民. 塔河油田AT1井区中三叠统中油组湖底扇沉积特征研究[J]. 岩性油气藏, 2010, 22(3): 53-58. |
[13] | 陆燕妮,邓勇,陈刚. 塔河油田缝洞型底水油藏临界产量计算研究[J]. 岩性油气藏, 2009, 21(4): 108-110. |
[14] | 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115-119. |
[15] | 李柏林, 涂兴万, 李传亮. 塔河缝洞型碳酸盐岩底水油藏产量递减特征研究[J]. 岩性油气藏, 2008, 20(3): 132-134. |
|