岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 150–158.doi: 10.12108/yxyqc.20220414

• 石油工程与油气田开发 • 上一篇    下一篇

塔河油田奥陶系缝洞型油藏油水流动规律

宋传真1,2, 马翠玉1,   

  1. 1. 中国石化石油勘探开发研究院, 北京 102206;
    2. 中国石油化工集团公司 海相油气藏开发重点实验室, 北京 102206
  • 收稿日期:2021-08-04 修回日期:2021-11-09 出版日期:2022-07-01 发布日期:2022-07-07
  • 作者简介:宋传真(1974-),女,硕士,高级工程师,主要从事特殊油气藏开发研究方面的工作。地址:(102206)北京市昌平区沙河镇百沙路197号。Email:songfax.syky@sinopec.com。
  • 基金资助:
    国家科技重大专项“缝洞型碳酸盐岩油藏提高采收率关键技术”(编号:2016ZX05014)资助

Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield

SONG Chuanzhen1,2, MA Cuiyu1,   

  1. 1. Sinopec Petroleum Exploration and Production Research Institute, Beijing 102206, China;
    2. Sinopec Key Laboratory of Marine Oil & Gas Reservoirs Production, Beijing 102206, China
  • Received:2021-08-04 Revised:2021-11-09 Online:2022-07-01 Published:2022-07-07

摘要: 基于对塔河油田奥陶系缝洞型油藏地质特征及开发特征的认识,建立了概念缝洞结构模型和实际地质模型,采用流线模拟方法探讨了各模型的油水流动规律。研究结果表明:①塔河油田孔、洞、缝空间结构复杂,可分为未充填溶洞、部分充填溶洞、全充填溶洞和裂缝贯穿充填溶洞等4种,不同类型储集体生产特征差异大,井间连通性较好,但横向驱替弱。②研究区不同缝洞结构模型内油水流动规律不同,未充填溶洞内流体均匀流动,在底水驱替下油水界面呈现水平抬升特征;部分充填溶洞在下部充填区表现为底水锥进特征,而上部未充填区油水界面趋于水平抬升,水封下部溶洞内的剩余油;全充填溶洞与砂岩油藏油水流动特征一致,底水锥状驱替;中大尺度裂缝穿过充填溶洞时,裂缝为油水流动的高速通道,呈现裂缝水窜特征,在油井钻遇的充填洞一侧沿缝面到井底呈水锥特征,而缝外侧溶洞内原油基本未动用,为高角度裂缝屏蔽剩余油。③研究区在天然能量开发条件下,流体流动仅受井周有效储集体发育规模控制,以垂向流动为主,单井有效动用范围局限;多井生产时,井间流线仅在油水界面以下相连且分布范围较广,井间干扰少;注水开采期间,井间流线仍以垂向分布为主,仅在底部统一水体位置注采时,井间连接较好,注入水横向驱替弱。

关键词: 缝洞油藏, 流线模拟, 油水流动规律, 水驱, 碳酸盐岩储层, 奥陶系, 塔河油田

Abstract: Based on the geological and production characteristics of Ordovician fractured-vuggy reservoirs in Tahe Oilfield,the conceptual fracture-vuggy model and actual geological model were established,and oil-water flow law of each model was discussed by using streamline simulation method. The results show that:(1)The fracturevuggy reservoirs in Tahe Oilfield have complex spatial structure composed of caves,pores and fractures. There are four types of caves including unfilled caves,partially-filled caves,fully filled caves and fully filled caves through with fractures. The production characteristics of different types of reservoirs differs greatly,the connectivity between wells is good,but the lateral displacement is weak.(2)The oil-water flow laws are different in different types of fractured-vuggy structure models. In unfilled caves,the fluid flowed uniformly,and the oil-water interface presented a horizontally rise under the displacement of bottom water. For the partially-filled caves,the bottom water coning in the lower filled zones was obvious,while in the upper unfilled zones,the oil-water interface tended to rise horizontally, which resulted in water sealing the remaining oil in the lower caves. In fully filled caves, the characteristics of bottom water coning are obvious,and the oil-water flow laws are similar with sandstone reservoirs. For the fully filled caves through with large-scale fractures,the fracture was a high-speed channel for oilwater flow,where water channeling happened easily. On the side of the filled cave drilled by a production well, water along the fracture was coning to the bottom of the well. However,the crude oil in the cave outside the fracture is basically undeveloped,that is the remaining oil shielded by high-angle fractures.(3)During the natural energy development process,the oil-water flow is mainly vertical and controlled by the scale of the effective reservoirs around the well,and the producing scale of single well is limited. During multi-well production,the streamline between wells is only connected below the oil-water interface and is widely distributed,and there is no or less inter-well interference. During the water-flooding development process,the streamlines between injectionproduction wells are still mainly distributed vertically. The streamline connection is better only in bottom water position. The lateral displacement of injected water is weak.

Key words: fractured-vuggy reservoir, streamline simulation, oil-water flow law, water flooding, carbonate reservoir, Ordovician, Tahe Oilfield

中图分类号: 

  • TE344
[1] 翟晓先, 云露.塔里木盆地塔河大型油田地质特征及勘探思路回顾[J]. 石油与天然气地质, 2008, 29(5):565-573. ZHAI Xiaoxian, YUN Lu. Geology of giant Tahe oilfield and a review of exploration thinking in the Tarim Basin[J]. Oil & Gas Geology, 2008, 29(5):565-573.
[2] 焦方正, 窦之林.塔河碳酸盐岩缝洞型油藏开发研究与实践[M]. 北京:石油工业出版社, 2008:6. JIAO Fangzheng, DOU Zhilin. Development research and practice on fracture-vuggy carbonate reservoirs in Tahe oil field[M]. Beijing:Petroleum Industry Press, 2008:6.
[3] 康志江, 李阳, 计秉玉, 等.碳酸盐岩缝洞型油藏提高采收率关键技术[J].石油与天然气地质, 2020, 41(2):434-441. KANG Zhijiang, LI Yang, JI Bingyu, et al. Key technologies for EOR in fractured-vuggy carbonate reservoirs[J]. Oil & Gas Geology, 2020, 41(2):434-441.
[4] 李江龙, 陈志海, 高树生.缝洞型碳酸盐岩油藏水驱油微观实验模拟研究:以塔河油田为例[J]. 石油实验地质, 2009, 31(6):637-642. LI Jianglong, CHEN Zhihai, GAO Shusheng. Microcosmic experiment modeling on water-driven-oil mechanism in fracturedvuggy reservoirs[J]. Petroleum Geology & Experiment, 2009, 31(6):637-642.
[5] 郑小敏, 孙雷, 王雷, 等.缝洞型碳酸盐岩油藏水驱油机理物理模拟研究[J]. 西南石油大学学报(自然科学版), 2010, 32(2):89-92. ZHENG Xiaomin, SUN Lei, WANG Lei, et al. Physical simulation of water displacement mechanism in fractured-vuggy carbonate reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(2):89-92.
[6] 汪勇. 缝洞型碳酸盐岩油藏油-水、油-气两相流动规律研究[D].北京:中国石油大学(北京), 2020. WANG Yong. Study on two-phase-flow of oil-water and oil-gas in fractured-vuggy carbonate reservoir[D]. Beijing:China University of Petroleum(Beijing), 2020.
[7] 吕爱民, 姚军.缝洞型底水油藏含水率变化规律研究[J].新疆石油地质, 2007, 28(3):344-347. LYU Aimin, YAO Jun. The variation of water cut in fracturedvuggy reservoir with bottom water[J]. Xinjiang Petroleum Geology, 2007, 28(3):344-347.
[8] 翟晓先.塔里木盆地塔河特大型油气田勘探实践与认识[J]. 石油实验地质, 2011, 33(4):323-331. ZHAI Xiaoxian. Exploration practice and experience of Tahe giant oil-and-gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 2011, 33(4):323-331.
[9] 何治亮, 彭守涛, 张涛. 塔里木盆地塔河地区奥陶系储层形成的控制因素与复合-联合成因机制[J]. 石油与天然气地质, 2010, 31(6):743-752. HE Zhiliang, PENG Shoutao, ZHANG Tao. Controlling factors and genetic pattern of the Ordovician reservoirs in the Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2010, 31(6):743-752.
[10] 窦之林.塔河油田碳酸盐岩缝洞型油藏开发技术[M].北京:石油工业出版社, 2012. DOU Zhilin. Development technology of carbonate fracture- cave type reservoir in Tahe Oilfield[M]. Beijing:Petroleum Industry Press, 2012.
[11] 田亮, 李佳玲, 焦保雷.塔河油田12区奥陶系油藏溶洞充填机理及挖潜方向[J].岩性油气藏, 2018, 30(3):52-60. TIAN Liang, LI Jialing, JIAO Baolei. Filling mechanism and potential tapping direction of Ordovician karst reservoirs in block-12 of Tahe Oilfield[J]. Lithologic Reservoirs, 2018, 30(3):52-60.
[12] 李宗宇.塔河缝洞型碳酸盐岩油藏油井见水特征浅析[J].特种油气藏, 2008, 15(6):52-55. LI Zongyu. Analysis on water appearance characteristics of oil wells in Tahe fracture-cave carbonate reservoir[J]. Special Oil & Gas Reservoirs, 2008, 15(6):52-55.
[13] 程飞.缝洞型碳酸盐岩油藏储层类型动静态识别方法:以塔里木盆地奥陶系为例[J].岩性油气藏, 2017, 29(3):76-82. CHENG Fei. Integrated dynamic and static identification method of fractured-vuggy carbonate reservoirs:A case from the Ordovician in Tarim Basin[J]. Lithologic Reservoirs, 2017, 29(3):76-82.
[14] AL-HARBI M, CHENG Hao, HE Zhong, et al. Streamlinebased production data integration in naturally fractured reservoirs[R]. SPE Annual Technical Conference and Exhibition, 2004.
[15] 赵艳艳, 崔书岳, 张允.基于流线数值模拟精细历史拟合的缝洞型油藏剩余油潜力评价[J].西安石油大学学报(自然科学版), 2019, 34(5):45-51. ZHAO Yanyan, CUI Shuyue, ZHANG Yun. Potential evaluation of residual oil in fractured-vuggy reservoir based on fine history fitting of streamline numerical simulation[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2019, 34(5):45-51.
[16] 孙亮, 李保柱, 刘凡.基于Pollock流线追踪的油藏高效水驱管理方法[J].岩性油气藏, 2021, 33(3):169-176. SUN Liang, LI Baozhu, LIU Fan. Efficient management of water flooding reservoirs based on Pollock streamline tracing[J]. Lithologic Reservoirs, 2021, 33(3):169-176.
[17] 李阳, 侯加根, 李永强.碳酸盐岩缝洞型储集体特征及分类分级地质建模[J].石油勘探与开发, 2016, 43(4):600-606. LI Yang, HOU Jiagen, LI Yongqiang. Features and hierarchical modeling of carbonate fracture-cavity reservoirs[J]. Petroleum Exploration and Development, 2016, 43(4):600-606.
[18] 吕心瑞, 孙建芳, 邬兴威, 等.缝洞型碳酸盐岩油藏储层结构表征方法:以塔里木盆地塔河S67单元奥陶系油藏为例[J]. 石油与天然气地质, 2021, 42(3):728-737. LYU Xinrui, SUN Jianfang, WU Xingwei, et al. Internal architecture characterization of fractured-vuggy carbonate reservoirs:A case study on the Ordovician reservoirs, Tahe Unit S67, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3):728-737.
[19] 任文博.流势调控在缝洞型碳酸盐岩油藏控水稳油中的应用[J].岩性油气藏, 2019, 31(6):127-134. REN Wenbo. Application of flow potential control in water control and oil stabilization of fractured-vuggy carbonate reservoirs[J]. Lithologic Reservoirs, 2019, 31(6):127-134.
[20] 杜春晖, 仇鹤, 陈小凡, 等.基于数值模拟的流势分析技术在缝洞型油藏开发中的应用[J]. 油气藏评价与开发, 2020, 10(2):83-89. DU Chunhui, QIU He, CHEN Xiaofan, et al. Application of flow potential analysis technique based on numerical simulation in the development of fractured-vuggy reservoir[J]. Reservoir Evaluation and Development, 2020, 10(2):83-89.
[21] 梁健, 王栋, 张鑫, 等.塔河油田碳酸盐岩缝洞型油藏远井储集体定量化表征及动用技术[J].地质学刊, 2021, 45(1):29-36. LIANG Jian, WANG Dong, ZHANG Xin, et al. Study on quantitative characterization and production technology of far-well carbonate fracture-cavity reservoir in Tahe Oilfield[J]. Journal of Geology, 2021, 45(1):29-36.
[22] 李斌, 吕海涛, 耿峰, 等.塔河油田碳酸盐岩缝洞型油藏单储系数概率分布模型[J].油气地质与采收率, 2021, 28(3):62-69. LI Bin, LYU Haitao, GENG Feng, et al. A probability distribution model of reserves per unit volume of fracture-cavity reservoirs in Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3):62-69.
[23] 李阳. 塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J]. 石油学报, 2013, 34(1):115-121. LI Yang. The theory and method for development of carbonate fractured-cavity reservoirs in Tahe oilfield[J]. Acta Petrolei Sinica, 2013, 34(1):115-121.
[1] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[2] 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
[3] 罗振锋, 苏中堂, 廖慧鸿, 黄文明, 马慧, 佘伟. 鄂尔多斯盆地中东部米脂地区奥陶系马五5亚段叠层石白云岩特征及其地质意义[J]. 岩性油气藏, 2022, 34(2): 86-94.
[4] 张梦琳, 李郭琴, 何嘉, 衡德. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151.
[5] 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
[6] 毛志强, 张雯, 吴春洲, 陈立峰, 陈亚东, 李岗, 曾慧勇, 刘靓. 纵向双层缝洞油藏橡胶颗粒调流适应性[J]. 岩性油气藏, 2021, 33(5): 172-180.
[7] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[8] 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128.
[9] 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176.
[10] 黄芸, 杨德相, 李玉帮, 胡明毅, 季汉成, 樊杰, 张晓芳, 王元杰. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 70-80.
[11] 戴晓峰, 谢占安, 杜本强, 张明, 唐廷科, 李军, 牟川. 高石梯—磨溪地区灯影组多次波控制因素及预测方法[J]. 岩性油气藏, 2020, 32(4): 89-97.
[12] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[13] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[14] 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134.
[15] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!