岩性油气藏 ›› 2022, Vol. 34 ›› Issue (5): 50–62.doi: 10.12108/yxyqc.20220504

• 地质勘探 • 上一篇    下一篇

鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征

张凤奇1,2, 李宜浓1,2,3, 罗菊兰3, 任小锋3, 张兰馨1,2, 张芥瑜1,2   

  1. 1. 西安石油大学 地球科学与工程学院, 西安 710065;
    2. 西安石油大学 陕西省油气成藏地质学重点实验室, 西安 710065;
    3. 中国石油集团测井有限公司, 西安 710077
  • 收稿日期:2022-01-29 修回日期:2022-04-24 出版日期:2022-09-01 发布日期:2022-09-06
  • 通讯作者: 李宜浓(1992-),女,西安石油大学在读硕士研究生,研究方向为非常规油气地质。Email:liyinongcq@cnpc.com.cn。 E-mail:liyinongcq@cnpc.com.cn。
  • 作者简介:张凤奇(1981-),男,博士,教授,从事非常规油气、深层油气成藏机理与富集规律等方面的教学和研究工作。地址:(710065)陕西省西安市电子二路东段18号。Email:zhangfq@xsyu.edu.cn
  • 基金资助:
    陕西省自然科学基础研究计划项目“致密砂岩储层多尺度微观孔喉分布表征及其含油有效性”(编号:2017JM4004)和陕西省教育厅重点实验室科研计划项目“强非均质性致密砂岩储层石油形成的流体动力学机制研究:以鄂尔多斯盆地延长组长7油层组为例”(编号:17JS110)联合资助

Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin

ZHANG Fengqi1,2, LI Yinong1,2,3, LUO Julan3, REN Xiaofeng3, ZHANG Lanxin1,2, ZHANG Jieyu1,2   

  1. 1. School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi'an Shiyou University, Xi'an 710065, China;
    3. CNPC Logging Co., Ltd., Xi'an 710077, China
  • Received:2022-01-29 Revised:2022-04-24 Online:2022-09-01 Published:2022-09-06

摘要: 采用氩离子抛光场发射扫描电镜观察、X射线衍射分析、氦气孔隙度测定、低温氮气吸附-脱附等实验手段,联合FHH分形理论模型,从多角度表征了鄂尔多斯盆地西部奥陶系乌拉力克组不同类型页岩的微观孔隙结构特征。研究结果表明:①研究区矿物成分复杂,黏土矿物含量较稳定,脆性矿物含量高、变化范围较大,可分为3类岩相类型,自下而上依次为硅质页岩岩相、混合页岩岩相和钙质页岩岩相。②研究区孔隙度整体较低,主要为0.16%~1.50%,平均1.20%,微裂缝发育造成少量孔隙度大于4.00%,硅质页岩孔隙度最大,钙质页岩孔隙度最小,混合页岩孔隙度介于二者之间;孔隙类型复杂且与岩相密切相关,钙质页岩整体致密,多为晶间孔、溶蚀孔,以狭缝状孔隙为主;硅质页岩孔隙相对发育,多为粒间孔、黏土矿物层间缝和微裂缝,以平板状开放孔隙为主,偶见“细颈广体”的墨水瓶式的无定形孔隙。③研究区孔隙结构可划分为3类,Ⅰ类以2~4 nm的介孔为主,中孔、宏孔均较发育,孔隙体积大,在硅质页岩中常见;Ⅱ类以0~4 nm的微孔、介孔为主,宏孔发育较少,在硅质页岩和混合页岩中常见;Ⅲ类以50~100 nm的宏孔为主,但体积小,在钙质页岩中常见。④研究区页岩微观孔隙结构具有明显的分形特征,内部结构复杂,非均质性强;TOC、黏土矿物和石英的含量越高,孔隙结构和孔隙表面越复杂。⑤研究区硅质页岩储层孔隙结构最好且有机质富集,是最有利的勘探目标。

关键词: 孔隙结构, 分形维数, 吸附回滞环, 氮气吸附法, 页岩岩相, 乌拉力克组, 奥陶系, 鄂尔多斯盆地

Abstract: By means of argon ion polishing field emission scanning electron microscope observation,X-ray dif-fraction analysis,helium porosity measurement,cryogenic nitrogen adsorption-desorption and other experimental methods,combined with FHH fractal theory model,the microscopic pore structure characteristics of different types of shale of Ordovician Wulalike Formation in western Ordos Basin were characterized. The results show that:(1)The study area has complex mineral composition,relatively stable clay mineral content,high brittle mineral content and wide variation range. It can be divided into three types of lithofacies,including siliceous shale lithofacies,mixed shale lithofacies and calcareous shale lithofacies from bottom to top.(2)The overall porosity of the study area is low,mainly ranging from 0.16% to 1.50%,with an average of 1.20%. Microfracture development results in a small amount of porosity greater than 4.00%. Siliceous shale has the highest porosity,calcareous shale has the lowest porosity,and mixed shale has the porosity between them. The pore types are complex and closely related to lithofacies. The calcareous shale is compact as a whole,dominated by intercrystalline pores and dissolved pores,and mainly slit pores. The pores of siliceous shale are relatively developed,which are mostly intergranular pores,interlayer fractures and microfractures of clay minerals. The open pores are mainly flat,and inkbottle shaped amorphous pores are occasionally seen.(3)The pore structure in the study area can be divided into three types. TypeⅠis mainly composed of 2-4 nm mesopores,with large pore volume and well-developed mesopores,which are common in siliceous shale. Type Ⅱ is dominated by 0-4 nm micropores and mesopores,with less macro-pores,which are common in siliceous shales and mixed rocks. Type Ⅲ is dominated by 50-100 nm macropores,but small in size,which are common in calcareous shale.(4)The microscopic pore structure of shale in the study area has obvious fractal characteristics,complex internal structure and strong heterogeneity. The higher the TOC,clay minerals and quartz content,the more complex the pore structure and pore surface.(5)The siliceous shale reservoir in the study area has the best pore structure and is rich in organic matter,which is the most favorable exploration target.

Key words: pore structure, fractal dimension, adsorption hysteresis loop, nitrogen adsorption method, shale lithofacies, Wulalike Formation, Ordovician, Ordos Basin

中图分类号: 

  • TE132.2
[1] 邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864. ZOU Caineng,ZHU Rukai,BAI Bin,et al. First discovery of nanopore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica,2011,27(6):1857-1864.
[2] 朱炎铭,王阳,陈尚斌,等.页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例[J]. 地学前缘, 2016,23(1):154-163. ZHU Yanming,WANG Yang,CHEN Shangbin,et al. Qualitativequantitative multiscale characterization of pore structures in shale reservoirs:A case study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers,2016,23(1):154-163.
[3] 陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444. CHEN Shangbin,ZHU Yanming,WANG Hongyan,et al. Struc- ture characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society,2012,37(3):438-444.
[4] 杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455. YANG Feng,NING Zhengfu,KONG Detao,et al. Pore struc- ture of shale from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience,2013,24(3):450-455.
[5] 杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623. YANG Feng,NING Zhengfu,WANG Qing,et al. Fractal characteristics of nanopore in shale[J]. Natural Gas Geoscience,2014, 25(4):618-623.
[6] 杨峰,宁正福,张世栋,等.基于氮气吸附实验的页岩孔隙结构表征[J].天然气工业,2013,33(4):135-140. YANG Feng,NING Zhengfu,ZHANG Shidong,et al. Charac- terization of pore structures in shales through nitrogen adsorption experiment[J]. Natural Gas Industry,2013,33(4):135-140.
[7] 吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报,2012,33(2):249-256. JI Liming,QIU Junli,XIA Yanqing,et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica,2012, 33(2):249-256.
[8] 侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256. HOU Yuguang,HE Sheng,YI Jizheng,et al. Effect of pore struc- ture on methane sorption capacity of shales[J]. Petroleum Ex- ploration and Development,2014,41(2):248-256.
[9] 郭旭升,李宇平,刘若冰,等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J].天然气工业,2014, 34(6):9-16. GUO Xusheng,LI Yuping,LIU Ruobing,et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area,Sichuan Basin[J]. Natural Gas Industry, 2014,34(6):9-16.
[10] 席胜利,莫午零,刘新社,等.鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力:以忠平1 井为例[J].天然气地球科学,2021,32(8):1235-1246. XI Shengli,MO Wuling,LIU Xinshe,et al. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin:Case study of well Zhongping 1[J]. Natural Gas Geoscience,2021,32(8):1235-1246.
[11] 马占荣,白海峰,刘宝宪,等.鄂尔多斯西部地区中-晚奥陶世克里摩里期-乌拉力克期岩相古地理[J]. 古地理学报, 2013,15(6):751-764. MA Zhanrong,BAI Haifeng,LIU Baoxian,et al. Lithofacies palaeogeography of the Middle-Late Ordovician Kelimoli and Wu- lalike ages in western Ordos area[J]. Journal of Palaeogeography (Chinese Edition),2013,15(6):751-764.
[12] 付锁堂,付金华,席胜利,等.鄂尔多斯盆地奥陶系海相页岩气地质特征及勘探前景[J].中国石油勘探,2021,26(2):33-44. FU Suotang,FU Jinhua,XI Shengli,et al. Geological characteristics of Ordovician marine shale gas in the Ordos Basin and its prospects[J]. China Petroleum Exploration,2021,26(2):33-44.
[13] 杨华,陶家庆,欧阳征健,等.鄂尔多斯盆地西缘构造特征及其成因机制[J]. 西北大学学报(自然科学版),2011,41(5):863-868. YANG Hua,TAO Jiaqing,OUYANG Zhengjian,et al. Structural characteristics and forming mechanism in the western margin of the Ordos Basin[J]. Journal of Northwest University(Natural Science Edition),2011,41(5):863-868.
[14] 吴东旭,周进高,吴兴宁,等.鄂尔多斯盆地西缘早中奥陶世岩相古地理研究[J].高校地质学报,2018,24(5):747-760. WU Dongxu,ZHOU Jingao,WU Xingning,et al. Lithofacies and palaeogeography of the Early-Middle Ordovician in the western Ordos Basin[J]. Geological Journal of China Universities,2018, 24(5):747-760.
[15] 吴东旭,吴兴宁,李程善,等.鄂尔多斯盆地西部奥陶系乌拉力克组烃源岩沉积模式及生烃潜力[J].海相油气地质,2021, 26(2):123-130. WU Dongxu,WU Xingning,LI Chengshan,et al. Sedimentary model and hydrocarbon-generation potential of source rock of the Ordovician Ulalik Formation in western Ordos Basin[J]. Marine Origin Petroleum Geology,2021,26(2):123-130.
[16] 石油地质勘探专业标准化委员会.沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法:SY/T 5163-2018[S].北京:石油工业出版社,2018. Petroleum Exploration Standardization Technical Committee. Analysis method for clay mineral and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction:SY/T 5163-2018[S]. Beijing:Petroleum Industry Press,2018.
[17] 梁志凯,李卓,李连霞,等.松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏,2020,32(6):22-35. LIANG Zhikai,LI Zhuo,LI Lianxia,et al. Relationship between multifractal characteristics of pore size and lithofacies of shale of Shahezi Formation in Changling fault depression,Songliao Basin[J]. Lithologic Reservoirs,2020,32(6):22-35.
[18] 谢庆宾,王佳,宋姝豫,等.昭通示范区龙马溪组页岩气高产储层微观孔隙结构定量表征[J]. 新疆石油天然气,2021,17(3):7-17. XIE Qingbin,WANG Jia,SONG Shuyu,et al. Quantitative characterization of microscopic pore structures for the high-yield- ing shale gas reservoir of Longmaxi Formation in Zhaotong demonstration zone[J]. Xinjiang Oil & Gas,2021,17(3):7-17.
[19] 全国石油天然气标准化技术委员会. 岩心分析方法:GB/T29172-2012[S].北京:中国标准出版社,2012. National Petroleum and Natural Gas Standardization Technical Committee. Practices for core analysis:GB/T29172-2012[S]. Beijing:Standards Press of China,2012.
[20] 石油地质勘探专业标准化委员会.岩石样品扫描电子显微镜分析方法:SY/T 5162-2014[S].北京:石油工业出版社,2014. Petroleum Exploration Standardization Technical Committee. An- alytical method of rock sample by scanning electron microscope:SY/T 5162-2014[S]. Beijing:Petroleum Industry Press,2014.
[21] 石油地质勘探专业标准化委员会.岩石比表面积和孔径分布测定静态吸附容量法:SY/T6154-2019[S].北京:石油工业出版社,2019. Petroleum Exploration Standardization Technical Committee. Determination of specific surface and pore size distribution of rocks-Static adsorption capacity method:SY/T6154-2019[S]. Beijing:Petroleum Industry Press,2014.
[22] 陈居凯,朱炎铭,崔兆帮,等.川南龙马溪组页岩孔隙结构综合表征及其分形特征[J].岩性油气藏,2018,30(1):55-62. CHEN Jukai,ZHU Yanming,CUI Zhaobang,et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin[J]. Lithologic Reservoirs,2018,30(1):55-62.
[23] 谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102. XIE Xiaoyong,TANG Hongming,WANG Chunhua,et al. Con- trast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution[J]. Natural Gas Industry,2006,26(12):100-102.
[24] 郑珊珊,刘洛夫,汪洋,等.川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素[J].岩性油气藏,2019,31(3):55-65. ZHENG Shanshan,LIU Luofu,WANG Yang,et al. Characteris- tics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin[J]. Lithologic Reservoirs,2019,31(3):55-65.
[25] LOUCKS R G,REED R M,RUPPEL S C,et al. Morphology, genesis and distribution of nanometer-scale pores in Siliceous mudstone of the Mississippian Barnett Shale[J]. Journal of Sedi- mentary Research,2009,79(12):848-861.
[26] 陈相霖,郭天旭,石砥石,等.陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J].岩性油气藏,2019,31(5):52-60. CHEN Xianglin,GUO Tianxu,SHI Dishi,et al. Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi[J]. Lithologic Reservoirs,2019,31(5):52-60.
[27] 赵迪斐,郭英海,解徳录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-108. ZHAO Difei,GUO Yinghai,XIE Delu,et al. Fractal characteristics of shale reservoir pores based on nitrogen adsorption[J]. Journal of Northeast Petroleum University,2014,38(6):100-108.
[28] THOMMES M,KANEKO K,NEIMARK A V,et al. Physisorp- tion of gases,with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9/10):1051-1069.
[29] 庞河清,曾焱,刘成川,等.基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构[J]. 岩矿测试,2017,36(1):66-74. PANG Heqing,ZENG Yan,LIU Chengchuan,et al. Investigation of pore structure of an argillaceous rocks reservoir in the 5th member of Xujiahe Formation in western Sichuan,using NAM, NMR and AIP-FESEM[J]. Rock and Mineral Analysis,2017, 36(1):66-74.
[30] 郭娟,赵迪斐,梁孝柏,等.页岩纳米孔隙的结构量化表征:以川东南地区五峰组为例[J].岩性油气藏,2020,32(5):113-121. GUO Juan,ZHAO Difei,LIANG Xiaobo,et al. Quantitative characterization of shale nanopore structure:A case study of Wufeng Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2020,32(5):113-121.
[31] BROEKHOFF J,DEBOER J,et al. Studies on pore systems in catalysts:XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications-ScienceDirect[J]. Journal of Catalysis,1968,10(4),377-390.
[32] 肖磊,李卓,杨有东,等.渝东南下志留统龙马溪组不同岩相页岩的孔隙结构与分形特征[J].科学技术与工程,2021,21(2):512-521. XIAO Lei,LI Zhuo,YANG Youdong,et al. Pore structure and fractal characteristics of different lithofacies shales of the Lower Silurian Longmaxi Formation in southeast Chongqing[J]. Sci- ence Technology and Engineering,2021,21(2):512-521.
[33] 朱汉卿,贾爱林,位云生,等.基于氩气吸附的页岩纳米级孔隙结构特征[J].岩性油气藏,2018,30(2):77-84. ZHU Hanqing,JIA Ailin,WEI Yunsheng,et al. Nanopore struc- ture characteristics of shale based on Ar adsorption[J]. Lithologic Reservoirs,2018,30(2):77-84.
[1] 薛楠, 邵晓州, 朱光有, 张文选, 齐亚林, 张晓磊, 欧阳思琪, 王淑敏. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境[J]. 岩性油气藏, 2023, 35(3): 51-65.
[2] 白杨, 张晓磊, 刚文哲, 张忠义, 杨尚儒, 庞锦莲, 曹晶晶, 侯云超. 鄂尔多斯盆地平凉北地区上三叠统长8段储层低含油饱和度油藏特征及成因[J]. 岩性油气藏, 2023, 35(3): 66-75.
[3] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[4] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[5] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
[6] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[7] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[8] 马东烨, 陈宇航, 赵靖舟, 吴伟涛, 宋平, 陈梦娜. 鄂尔多斯盆地东部二叠系下石盒子组8段河流相砂体构型要素[J]. 岩性油气藏, 2023, 35(1): 63-73.
[9] 文志刚, 罗雨舒, 刘江艳, 赵春雨, 李士祥, 田伟超, 樊云鹏, 高和婷. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏, 2022, 34(6): 47-59.
[10] 魏新, 唐建云, 宋红霞, 陈玉宝. 鄂尔多斯盆地甘泉地区上古生界烃源岩地球化学特征及生烃潜力[J]. 岩性油气藏, 2022, 34(6): 92-100.
[11] 米伟伟, 谢小飞, 曹红霞, 马强, 杜永慧, 张琼, 邓长生, 宋珈萱. 鄂尔多斯盆地东南部二叠系山2—盒8段致密砂岩储层特征及主控因素[J]. 岩性油气藏, 2022, 34(6): 101-117.
[12] 陈中红, 柴智. 原油混合后成熟度参数的差异性及其地质意义——以塔北隆起托甫台地区奥陶系为例[J]. 岩性油气藏, 2022, 34(5): 38-49.
[13] 张岩, 侯连华, 崔景伟, 罗霞, 林森虎, 张紫芸. 鄂尔多斯盆地三叠系长7富有机质段岩石热膨胀系数随温度演化特征及启示[J]. 岩性油气藏, 2022, 34(4): 32-41.
[14] 阴钰毅, 姚志纯, 郭小波, 王乐立, 陈思谦, 余小雷, 岑向阳. 鄂尔多斯盆地西缘二叠系隐伏构造特征及勘探意义[J]. 岩性油气藏, 2022, 34(4): 79-88.
[15] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[3] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[4] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[5] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .
[6] 张霞. 勘探人整体素质的培养——学会科学思维[J]. 岩性油气藏, 2008, 20(1): 129 -133 .
[7] 郑荣才, 王昌勇, 李 虹, 雷光明, 谢春红. 鄂尔多斯盆地白豹—华池地区长6 油层组物源区分析[J]. 岩性油气藏, 2007, 19(1): 32 -38 .
[8] 刘伟方, 段永华, 高建虎, 张喜梅, 孙勤华. 利用地震属性预测碳酸盐岩储层[J]. 岩性油气藏, 2007, 19(1): 101 -104 .
[9] 刘晓彦, 谢吉兵, 廖建波, 张家彬. 靖安油田ZJ2 井区侏罗系油藏水驱状况研究与调整对策[J]. 岩性油气藏, 2007, 19(1): 124 -129 .
[10] 郑荣才, 耿威, 周刚, 韩永林, 王海红, 文华国. 鄂尔多斯盆地白豹地区长6 砂岩成岩作用与成岩相研究[J]. 岩性油气藏, 2007, 19(2): 1 -8 .