岩性油气藏 ›› 2022, Vol. 34 ›› Issue (5): 38–49.doi: 10.12108/yxyqc.20220503

• 地质勘探 • 上一篇    下一篇

原油混合后成熟度参数的差异性及其地质意义——以塔北隆起托甫台地区奥陶系为例

陈中红1,2,3, 柴智1   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580;
    2. 长江大学 资源与环境学院武汉 430100;
    3. 湖北省油气地球化学与环境重点实验室, 武汉 430100
  • 收稿日期:2022-02-23 修回日期:2022-04-24 出版日期:2022-09-01 发布日期:2022-09-06
  • 作者简介:陈中红(1976-),男,博士,教授,博士生导师,主要从事油气成藏机理方面的研究工作。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)。Email:hongczh@163.com。
  • 基金资助:
    中国科学院战略性先导科技专项(A类)“塔里木盆地重点地区深层油气运移机理与富集模式”(编号:XDA14010305)和国家自然科学基金“深层高—过成熟天然气藏来源、原位裂解成因判别及其古油藏充注途径示踪研究”(编号:41572120)联合资助

Difference of maturity parameters of mixed crude oil and its geological significance:A case study of Ordovician in Tuofutai area,Tabei uplift

CHEN Zhonghong1,2,3, CHAI Zhi1   

  1. 1. School of Geosciences, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. School of Resources and Environment, Yangtze university, Wuhan 430100, China;
    3. Hubei Key Laboratory of Petroleum Geochemistry and Environment, Wuhan 430100, China
  • Received:2022-02-23 Revised:2022-04-24 Online:2022-09-01 Published:2022-09-06

摘要: 通过精细刻画塔里木盆地塔北隆起托甫台地区奥陶系原油物性、族组分特征、分子标志物特征、成熟度等,分析了原油混合后成熟度参数的差异性及其地质意义。研究结果表明:①原油中不同组分的成熟度指标反映的结果存在一定差异,相对而言轻烃和金刚烷类参数计算的成熟度要高于甾萜烷类和芳烃类推算的结果,这是由不同成熟度原油的混合作用所导致,可作为多期充注和混合作用的依据。轻烃和金刚烷主要反映后期充注原油的成熟度;甾萜类、菲类和二苯并噻吩类等通常指示早期充注原油的成熟度。②由于不同成熟度参数抗生物降解能力不同,生物降解也会导致成熟度参数出现不同的变化。③轻烃、金刚烷类参数和甾萜烷、芳烃类成熟度参数平面上的差异反映了油气充注路径或油源断裂活动性的变化。④原油物性是各组分的综合体现,是区域性油气成藏机理分析的基本参数。

关键词: 族组分特征, 分子标志物, 原油成熟度, 原油混合, 原油充注, 奥陶系, 托甫台地区, 塔北隆起

Abstract: Based on the characteristics of physical properties,group component,molecular marker and maturity of Ordovician crude oil in Tuofutai area of Tabei uplift in Tarim Basin,the differences of maturity parameters after crude oil mixing and their geological significance were analyzed. The results show that:(1)Although different maturity parameters indicate that the crude oil is in mature to high maturity stage,the values of maturity calculated from light hydrocarbons and diamondoids are higher than that calculated from steranes,terpanes and aromatics. This phenomenon is caused by the mixing of crude oil with different maturity,which can be used as favorable evidence for multi-stage filling and mixing. Light hydrocarbons and diamondoids mainly reflect the maturity of latefilled crude oil,while steranes and terpanes,phenanthrenes and dibenzothiophenes usually indicate the maturity of early-filled crude oil.(2)Due to the difference in resistance to biodegradation of different maturity parameters,biodegradation will lead to different changes in maturity parameters.(3)The differences of maturity parameters calculated from the light hydrocarbons,diamondoids,steranes,terpanes and aromatics on the plane reflect the changes of hydrocarbon filling pathway or the activity of oil-source faults.(4)The physical properties of crude oil are a comprehensive reflection of various components and basic parameters for analyzing regional hydrocarbon accumulation mechanism.

Key words: group component features, molecular markers, crude oil maturity, crude oil mixing, crude oil filling, Ordovician, Tuofutai area, Tabei uplift

中图分类号: 

  • TE122.1
[1] WAPLES D W,MACHIHARA T. Application of sterane and triterpane biomarkers in petroleum exploration[J]. Bulletin of Canadian Petroleum Geology,1990,38(3):357-380.
[2] JUSTWAN H,DAHL B,ISAKSEN G H. Geochemical charac- terization and genetic origin of oils and condensates in the South Viking Graben,Norway[J]. Marine and Petroleum Geology,2006,23(2):213-239.
[3] 王崇敬,张鹤,李世宇,等. 基于分子标志物的有机质成熟度评价参数选择及其适用范围分析[J]. 地质科技情报,2018, 37(4):202-211. WANG Chongjing,ZHANG He,LI Shiyu,et al. Maturity parameters selection and applicable range analysis of organic matter based on molecular markers[J]. Geological Science and Tech- nology Information,2018,37(4):202-211.
[4] CHEN Junhong,FU Jiamo,SHENG Guoying,et al. Diamon- doid hydrocarbon ratios:Novel maturity indices for highly ma- ture crude oils[J]. Organic Geochemistry,1996,25(3/4):179- 190.
[5] DAHL J E,MOLDOWAN J M,PETERS K E,et al. Diamon- doid hydrocarbons as indicators of natural oil cracking[J]. Na- ture,1999,399(6731):54-57.
[6] RADKE M. The methylphenanthrene index(MPI):A maturity parameter based on aromatic hydrocarbons[J]. Advances Or- ganic Geochemistry,1983,1981:504-512.
[7] RADKE M. Application of aromatic compounds as maturity in- dicators in source rocks and crude oils[J]. Marine and Petro- leum Geology,1988,5(3):224-236.
[8] PETERS K E,WALTERS C C,MOLDOWAN J M. The bio- marker guide[M]. New York:Cambridge University Press, 2005:475-705.
[9] ODDEN W,PATIENCE R L,VAN GRAAS G W. Application of light hydrocarbons(C4-C13)to oil/source rock correlations:A study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway[J]. Organic Geochemistry, 1998,28(12):823-847.
[10] SONG Daofu,LI Meijun,SHI Shengbao,et al. Geochemistry and possible origin of crude oils from Bashituo oil field,Tarim Basin[J]. AAPG Bulletin,2019,103(4):973-995.
[11] CHAI Zhi,CHEN Zhonghong,LIU Hua,et al. Light hydrocar- bons and diamondoids of light oils in deep reservoirs of Shuntuoguole low uplift,Tarim Basin:Implication for the evaluation on thermal maturity,secondary alteration and source characteristics[J]. Marine and Petroleum Geology,2020,117:104388.
[12] CHAI Zhi,CHEN Zhonghong,PATIENCE R,et al. Light hy- drocarbons and diamondoids in deep oil from Tabei of Tarim Basin:Implications on petroleum alteration and mixing[J]. Ma- rine and Petroleum Geology,2022,138:105565.
[13] CHEN Zhonghong,CHAI Zhi,CHENG Bin,et al. Geochemis- try of high-maturity crude oil and gas from deep reservoirs and their geological significance:A case study on Shuntuoguole low uplift,Tarim Basin,western China[J]. AAPG Bulletin,2021, 105(1):65-107.
[14] WILHELMS A,LARTER S. Shaken but not always stirred. Im- pact of petroleum charge mixing on reservoir geochemistry[J]. Geological Society London Special Publications,2004,237(1):27-35.
[15] 曹正林,魏志福,张小军,等.柴达木盆地东坪地区油气源对比分析[J].岩性油气藏,2013,25(3):17-20. CAO Zhenglin,WEI Zhifu,ZHANG Xiaojun,et al. Oil-gas source correlation in Dongping area,Qaidam Basin[J]. Litho- logic Reservoirs,2013,25(3):17-20.
[16] 金秋月. 北部湾盆地涠西南凹陷东南斜坡原油成因类型及成藏特征[J]. 岩性油气藏,2020,32(1):11-18. JIN Qiuyue. Genesis types and accumulation characteristics of crude oil in southeast slope of Weixinan Depression,Beibuwan Basin[J]. Lithologic Reservoirs,2020,32(1):11-18.
[17] MOLDOWAN J M,MCCAFFREY M A. A novel microbial hy- drocarbon degradation pathway revealed by hopane demethyl- ation in a petroleum reservoir[J]. Geochimica et Cosmochimi- ca Acta,1995,59(9):1891-1894.
[18] ZHANG Suichang,HUANG Haiping,SU Jin,et al. Geochemis- try of Paleozoic marine oils from the Tarim Basin,NW China. Part 4:Paleobiodegradation and oil charge mixing[J]. Organic Geochemistry,2014,67(Complete):41-57.
[19] VOLKMAN J K,BARRETT S M,BLACKBURN S I,et al. Microalgal biomarkers:A review of recent research develop- ments[J]. Organic Geochemistry,1998,29(5/6/7):1163-1179.
[20] KODNER R B,PEARSON A,SUMMONS R E,et al. Sterols in red and green algae:Quantification,phylogeny,and rele- vance for the interpretation of geologic steranes[J]. Geobiolo- gy,2008,6(4):411-420.
[21] GROSJEAN E,LOVE G D,STALVIES C,et al. Origin of pe- troleum in the Neoproterozoic-Cambrian South Oman salt basin[J]. Organic Geochemistry,2009,40(1):87-110.
[22] HUGHES W B,HOLBA A G,DZOU L I P. The ratios of diben- zothiophene to phenanthrene and pristane to phytane as indica- tors of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta,1995,59(17):3581-3598.
[23] CHAKHMAKHCHEV A,SUZUKI N. Saturate biomarkers and aromatic sulfur compounds in oils and condensates from differ- ent source rock lithologies of Kazakhstan,Japan and Russia[J]. Organic Geochemistry,1995,23(4):289-299.
[24] ASIF M,WENGER L M. Heterocyclic aromatic hydrocarbon distributions in petroleum:A source facies assessment tool[J]Organic Geochemistry,2019,137:103896.
[25] 胡惕麟,戈葆雄,张义纲,等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质,1990,12(4):375-394. HU Tilin,GE Baoxiong,ZHANG Yigang,et al. The develop- ment and application of fingerprint parameters for hydrocar- bons absorbed by source rocks and light hydrocarbons in natu- ral gas[J]. Petroleum Geology & Experiment,1990,12(4):375-394.
[26] SCHULZ L K,WILHELMS A,REIN E,et al. Application of diamondoids to distinguish source rock facies[J]. Organic Geo- chemistry,2001,32(3):365-375.
[27] LERCH B,KARLSEN D A,MATAPOUR Z,et al. Organic geo- chemistry of Barents Sea petroleum:Thermal maturity and alter- ation and mixing processes in oils and condensates[J]. Journal of Petroleum Geology,2016,39(2),125-148.
[28] HUNT J M,HUC A Y,WHELAN J K. Generation of light hy- drocarbons in sedimentary rocks[J]. Nature,1980,288(5792):688-690.
[29] 王培荣,徐冠军,肖廷荣,等. 用C7轻烃参数判识烃源岩沉积环境的探索[J]. 石油勘探与开发,2007,34(2):156-159. WANG Peirong,XU Guanjun,XIAO Tingrong,et al. Applica- tion of C7light hydrocarbon parameters in identifying source rock depositional environment[J]. Petroleum Exploration and Development,2007,34(2):156-159.
[30] THOMPSON K. Classification and thermal history of petro- leum based on light hydrocarbons[J]. Geochimica et Cosmo- chimica Acta,1983,47(2):303-316.
[31] WALTERS C C,ISAKSEN G H,PETERS K E. Applications of light hydrocarbon molecular and isotopic compositions in oil and gas exploration[M]. New York:Springer,2003.
[32] SCHAEFER R G,LITTKE R. Maturity-related compositional changes in the low -molecular-weight hydrocarbon fraction of Toarcian shales[J]. Organic Geochemistry,1988,13(4/5/6):887-892.
[33] 郭小文,何生,陈红汉. 甲基双金刚烷成熟度指标讨论与应用[J].地质科技情报[J],2007,26(1):71-76. GUO Xiaowen,HE Sheng,CHEN Honghan. Discussion and application of the maturity indicators of methyl double diaman- tine hydrocarbons[J]. Geological Science and Technology In- formation,2007,26(1):71-76.
[34] LI Jinggui,PAUL P,CUI Mingzhong. Methyl diamantane in- dex(MDI)as a maturity parameter for Lower Palaeozoic car- bonate rocks at high maturity and over maturity[J]. Organic Geochemistry,2000,31(4):267-272.
[35] SEIFERT W K,MOLDOWAN J M. The effect of thermal stress on source-rock quality as measured by hopane stereo- chemistry[J]. Physics and Chemistry of the Earth,1980,12:229-237.
[36] SEIFERT W K. Use of biological markers in petroleum explora- tion[J]. Methods in Geochemistry and Geophysics,1986,24:261-290.
[37] RADKE M,WELTE D H,WILLSCH H. Geochemical study on a well in the Western Canada Basin:Relation of the aromat- ic distribution pattern to maturity of organic matter[J]. Geochi- mica et Cosmochimica Acta,1982,46(1):1-10.
[38] 陈致林,李素娟,王忠. 低-中成熟演化阶段芳烃成熟度指标的研究[J]. 沉积学报,1997,15(2):192-197. CHEN Zhilin,LI Sujuan,WANG Zhong. A study on maturity indicatorssome of some aromatics in low-midmature thermal evolution zones[J]. Acta Sedimentologica Sinica,1997,15(2):192-197.
[39] VAN AARSSEN B G K,BASTOW T P,ALEXANDER R,et al. Distributions of methylated naphthalenes in crude oils:Indi- cators of maturity,biodegradation and mixing[J]. Organic Geo- chemistry,1999,30(10):1213-1227.
[40] KYALHEIM O M,CHRISTY A A,TELNAES N,et al. Maturity determination of organic matter in coals using the methylphen- anthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987,51(7):1883-1888.
[41] 包建平,王铁冠,周玉琦,等. 甲基菲比值与有机质热演化的关系[J]. 江汉石油学院学报,1992,14(4):8-13. BAO Jianping,WANG Tieguan,ZHOU Yuqi,et al. The rela- tionship between methyl phenanthrene ratios and the evolution of organic matter[J]. Journal of Jianghan Petroleum Institute, 1992,14(4):8-13.
[42] 张明峰,妥进才,张小军,等. 柴达木盆地乌南油田油源及油气运移探讨[J]. 岩性油气藏,2012,24(2):61-66. ZHANG Mingfeng,TUO Jincai,ZHANG Xiaojun,et al. Dis- cussion on oil sources and petroleum migration in the Wunan oilfield,Qaidam Basin[J]. Lithologic Reservoirs,2012,24(2):61-66.
[43] ENGLAND W A,MACKENZIE A S,MANN D M,et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the Geological Society,1987,144(2):327-347.
[44] WU Zepeng,CHEN Zhonghong,CAO Zicheng,et al. Molecu- lar marker and carbon isotope geochemistry of Ordovician oils in the Tuofutai bulge,northern Tarim Basin:Implications for oil maturity,source characteristics and fi lling directions[J]. Ma- rine and Petroleum Geology,2020,122:104718.
[1] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[2] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[3] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[4] 徐壮, 石万忠, 王任, 骆福嵩, 夏永涛, 覃硕, 张晓. 塔北隆起西部地区白垩系碎屑岩油气成藏规律及成藏模式[J]. 岩性油气藏, 2023, 35(2): 31-46.
[5] 张凤奇, 李宜浓, 罗菊兰, 任小锋, 张兰馨, 张芥瑜. 鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征[J]. 岩性油气藏, 2022, 34(5): 50-62.
[6] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[7] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[8] 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
[9] 罗振锋, 苏中堂, 廖慧鸿, 黄文明, 马慧, 佘伟. 鄂尔多斯盆地中东部米脂地区奥陶系马五5亚段叠层石白云岩特征及其地质意义[J]. 岩性油气藏, 2022, 34(2): 86-94.
[10] 张梦琳, 李郭琴, 何嘉, 衡德. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151.
[11] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[12] 黄芸, 杨德相, 李玉帮, 胡明毅, 季汉成, 樊杰, 张晓芳, 王元杰. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 70-80.
[13] 戴晓峰, 谢占安, 杜本强, 张明, 唐廷科, 李军, 牟川. 高石梯—磨溪地区灯影组多次波控制因素及预测方法[J]. 岩性油气藏, 2020, 32(4): 89-97.
[14] 孙玉景, 周立发. 鄂尔多斯盆地马五段膏盐岩沉积对天然气成藏的影响[J]. 岩性油气藏, 2018, 30(6): 67-75.
[15] 田亮, 李佳玲, 焦保雷. 塔河油田12区奥陶系油藏溶洞充填机理及挖潜方向[J]. 岩性油气藏, 2018, 30(3): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .