岩性油气藏 ›› 2024, Vol. 36 ›› Issue (1): 169177.doi: 10.12108/yxyqc.20240116
白佳佳1,2, 司双虎1, 陶磊1, 王国庆1, 王龙龙1, 史文洋1, 张娜3, 朱庆杰1
BAI Jiajia1,2, SI Shuanghu1, TAO Lei1, WANG Guoqing1, WANG Longlong1, SHI Wenyang1, ZHANG Na3, ZHU Qingjie1
摘要: 针对低渗致密油藏注水困难、采收率低等问题,利用尿素基深共晶溶剂(DES)与十六烷基三甲基溴化铵(CTAB)复配的驱油剂体系,对驱油剂在低渗致密油藏中的降压增注和提高采收率机理进行了研究。研究结果表明: ①驱油剂体系可以将油水界面张力降低至10-3 mN/m以下,大大提高了洗油效率; ②驱油剂体系可有效抑制黏土矿物水化,避免了低渗致密砂岩中黏土矿物水化膨胀带来的流体敏感性损害; ③驱油剂体系可对砂岩表面进行界面修饰,驱油剂溶液浸泡后样品的油相接触角由25.8°增加至61.4°,亲水性增强,亲油性减弱,有助于吸附在岩石孔隙壁面的油膜脱落; ④超前注入驱油剂的注入压力降低率平均为79.64%,采收率平均为50.96%,远大于常规水驱(一次注水→注驱油剂驱→二次注水)的采收率。
中图分类号:
[1] 刘新, 安飞, 陈庆海, 等. 提高致密油藏原油采收率技术分析:以巴肯组致密油为例[J].大庆石油地质与开发, 2016, 35(6):164-169. LIU Xin, AN Fei, CHEN Qinghai, et al. Analysis of the EOR techniques for tight oil reservoirs:Taking Bakken-Formation as an example[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(6):164-169. [2] 何贤, 闫建平, 王敏, 等. 低渗透砂岩孔隙结构与采油产能关系:以东营凹陷南坡F154区块为例[J].岩性油气藏, 2022, 34(1):106-117. HE Xian, YAN Jianping, WANG Min, et al. Relationship between pore structure and oil production capacity of low permeability sandstone:A case study of block F154 in south slope of Dongying Sag[J]. Lithologic Reservoirs, 2022, 34(1):106-117. [3] 伏海蛟, 汤达祯, 许浩, 等. 致密砂岩储层特征及气藏成藏过程[J].断块油气田, 2012, 19(1):47-50. FU Haijiao, TANG Dazhen, XU Hao, et al. Characteristics of tight sandstone reservoir and accumlation process of gas pool[J]. Fault-Block Oil & Gas Field, 2012, 19(1):47-50. [4] 程启贵.大型低渗透岩性油藏评价及开发技术[M].北京:石油工业出版社, 2015. CHENG Qigui. Evaluation and development techniques of large low permeability lithologic reservoirs[M]. Beijing:Petroleum Industry Press, 2015. [5] 康毅力, 田键, 罗平亚, 等. 致密油藏提高采收率技术瓶颈与发展策略[J].石油学报, 2020, 41(4):467-477. KANG Yili, TIAN Jian, LUO Pingya, et al. Technical bottleneck and development strategy of enhancing recovery for tight reservoirs[J]. Acta Petrolei Sinica, 2020, 41(4):467-477. [6] 宋明明, 韩淑乔, 董云鹏, 等. 致密砂岩储层微观水驱油效率及其主控因素[J].岩性油气藏, 2020, 32(1):135-143. SONG Mingming, HAN Shuqiao, DONG Yunpeng, et al. Microscopic water flooding efficiency and main controlling factors of tight sandstone reservoir[J]. Lithologic Reservoirs, 2020, 32(1):135-143. [7] 苏皓, 雷征东, 张荻萩, 等. 致密油藏体积压裂水平井参数优化研究[J].岩性油气藏, 2018, 30(4):140-148. SU Hao, LEI Zhengdong, ZHANG Diqiu, et al. Volume fracturing parameters optimization of horizontal well in tight reservoir[J]. Lithologic Reservoirs, 2018, 30(4):140-148. [8] 赵习森, 党海龙, 庞振宇, 等. 特低渗储层不同孔隙组合类型的微观孔隙结构及渗流特征:以甘谷驿油田唐157井区长6储层为例[J].岩性油气藏, 2017, 29(6):8-14. ZHAO Xisen, DANG Hailong, PANG Zhenyu, et al. Microscopic pore structure and seepage characteristics of different pore assemblage types in ultra low permeability reservoir:A case of Chang 6 reservoir in Tang 157 well area, Ganguyi Oilfield[J]. Lithologic Reservoirs, 2017, 29(6):8-14. [9] 尚丹森, 侯吉瑞, 程婷婷. SiO2纳米流体在低渗透油藏中的驱油性能和注入参数优化[J].油田化学, 2021, 38(1):137-142. SHANG Dansen, HOU Jirui, CHENG Tingting. Flooding performance and optimization of injection parameters of SiO2 nanofluid in low permeability reservoirs[J]. Oilfield Chemistry, 2021, 38(1):137-142. [10] 杨森, 舒政, 闫婷婷, 等. 超低界面张力强乳化复合驱油体系在低渗透油藏中的应用[J].断块油气田, 2021, 28(4):561-565. YANG Sen, SHU Zheng, YAN Tingting, et al. Application of ultralow interfacial tension and strong emulsion composite flooding system in low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(4):561-565. [11] 吴天江, 赵燕红, 程辰, 等. 纳米聚合物微球/表面活性剂复合调驱体系评价及应用[J].油田化学, 2022, 39(1):46-50. WU Tianjiang, ZHAO Yanhong, CHENG Chen, et al. Evaluation and application of polymer microsphere and surfactant compound profile control and flooding system[J]. Oilfield Chemistry, 2022, 39(1):46-50. [12] 戴彩丽, 刘佳伟, 李琳, 等. 自生长水凝胶粒子特性及裂缝调控作用机理[J].石油学报, 2022, 43(6):840-848. DAI Caili, LIU Jiawei, LI Lin, et al. Characteristics and action mechanism of self-growing hydrogel particle fracture control system[J]. Acta Petrolei Sinica, 2022, 43(6):840-848. [13] MOHSENZADEH A, AL-WAHAIBI Y, AL-HAJRI R, et al. Sequential deep eutectic solvent and steam injection for enhanced heavy oil recovery and in-situ upgrading[J]. Fuel, 2017, 187:417-428. [14] SANATI A, RAHMANI S, NIKOO A H, et al. Comparative study of an acidic deep eutectic solvent and an ionic liquid as chemical agents for enhanced oil recovery[J]. Journal of Molecular Liquids, 2021, 329:115527. [15] HADJ-KALI M K, AL-KHIDIR K E, WAZEER I, et al. Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 487:221-231. [16] MOHSENZADEH A, AL-WAHAIBI Y, AL-HAJRI R, et al. Effects of concentration, salinity and injection scenario of ionic liquids analogue in heavy oil recovery enhancement[J]. Journal of Petroleum Science and Engineering, 2015, 133:114-122. [17] 康毅力, 张杜杰, 游利军, 等. 塔里木盆地超深致密砂岩气藏储层流体敏感性评价[J].石油与天然气地质, 2018, 39(4):738-748. KANG Yili, ZHANG Dujie, YOU Lijun, et al. Fluid sensitivity evaluation of ultra-deep tight sandstone gas reservoirs, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(4):738-748. [18] DELGADO-MELLADO N, LARRIBA M, NAVARRO P, et al. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis[J]. Journal of Molecular Liquids, 2018, 260:37-43. [19] 刘雪芬. 超低渗透砂岩油藏注水特性及提高采收率研究[D]. 成都:西南石油大学, 2015. LIU Xuefen. Water injection characteristics and enhanced oil recovery in ultra-low permeability sandstone reservoir[D]. Chengdu:Southwest Petroleum University, 2015. [20] EL-HOSHOUDY A N, SOLIMAN F S, MANSOUR E M, et al. Experimental and theoretical investigation of quaternary ammoniumbased deep eutectic solvent for secondary water flooding[J]. Journal of Molecular Liquids, 2019, 294:111621. [21] 刘雪芬, 康毅力, 罗平亚, 等. 氟化物对致密砂岩气体渗流能力的影响[J].石油学报, 2015, 36(8):995-1003. LIU Xuefen, KANG Yili, LUO Pingya, et al. Impact of fluoride on seepage ability of tight sandstone gas[J]. Acta Petrolei Sinica, 2015, 36(8):995-1003. [22] 范彩伟, 胡林, 李明, 等.琼东南盆地深水区圈闭有效性评价方法及其应用[J].中国海上油气, 2021, 33(5):1-13. FAN Caiwei, HU Lin, LI Ming, et al. Evaluation method of trap effectiveness in deep water area of Qiongdongnan Basin and its application[J]. China Offshore Oil and Gas, 2021, 33(5):1-13. [23] SANATI A, MALAYERI M R. CTAB adsorption onto dolomite in the presence of ionic liquid and deep eutectic solvent:Experimental and theoretical studies[J]. Journal of Molecular Liquids, 2021, 325:115176. [24] BEG M, HAIDER M B, THAKUR N K, et al. Clay-water interaction inhibition using amine and glycol-based deep eutectic solvents for efficient drilling of shale formations[J]. Journal of Molecular Liquids, 2021, 340:117134. [25] Al-RISHEQ D I M, NASSER M S, QIBLAWEY H, et al. Choline chloride based natural deep eutectic solvent for destabilization and separation of stable colloidal dispersions[J]. Separation and Purification Technology, 2021, 255:117737. [26] 杨明任, 申辉林, 曲萨, 等.AdaBoost算法在致密砂岩水淹层识别中的应用[J].中国海上油气, 2021, 33(4):62-69. YANG Mingren, SHEN Huilin, QU Sa, et al. Application of AdaBoost algorithm in recognition of water flooded tight sandstone layer[J]. China Offshore Oil and Gas, 2021, 33(4):62-69. |
[1] | 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188. |
[2] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[3] | 钱真, 毛志强, 郑伟, 黄远军, 陈立峰, 曾慧勇, 李岗, 宋嫒. 井间单套缝洞型油藏橡胶颗粒调剖堵水实验[J]. 岩性油气藏, 2023, 35(4): 161-168. |
[4] | 孟智强, 葛丽珍, 祝晓林, 王永平, 朱志强. 气顶边水油藏气/水驱产油量贡献评价方法[J]. 岩性油气藏, 2022, 34(5): 162-170. |
[5] | 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158. |
[6] | 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171. |
[7] | 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176. |
[8] | 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165. |
[9] | 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148. |
[10] | 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134. |
[11] | 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154. |
[12] | 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133. |
[13] | 贾红兵, 赵辉, 包志晶, 赵光杰, 毛伟, 李亚光. 水驱开发效果评价新方法及其矿场应用[J]. 岩性油气藏, 2019, 31(5): 101-107. |
[14] | 张志刚, 刘春杨, 刘国志. 低渗透油田储层连通关系动静态综合评价方法[J]. 岩性油气藏, 2019, 31(5): 108-113. |
[15] | 熊山, 王学生, 张遂, 赵涛, 庞菲, 高磊. WXS油藏长期水驱储层物性参数变化规律[J]. 岩性油气藏, 2019, 31(3): 120-129. |
|