岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 120–129.doi: 10.12108/yxyqc.20190314

• 油气田开发 • 上一篇    下一篇

WXS油藏长期水驱储层物性参数变化规律

熊山, 王学生, 张遂, 赵涛, 庞菲, 高磊   

  1. 中国石油长庆油田分公司 第一采油厂, 陕西 延安 716000
  • 收稿日期:2018-11-15 修回日期:2018-12-26 出版日期:2019-05-21 发布日期:2019-05-06
  • 作者简介:熊山(1971-),男,工程师,主要从事油藏评价及油气田开发方面的研究工作。地址:(710068)陕西省延安市宝塔区河庄坪镇中国石油长庆油田分公司第一采油厂。Email:xscqyt2010@126.com。
  • 基金资助:
    国家自然科学基金面上项目“变形介质复杂储层应力敏感性的岩石流变学机理及动态模型”(编号:51104119)资助

Physical properties variation of WXS reservoir after long-term water flooding

XIONG Shan, WANG Xuesheng, ZHANG Sui, ZHAO Tao, PANG Fei, GAO Lei   

  1. No.1 Oil Production Plant, PetroChina Changqing Oilfield Company, Yan'an 716000, Shaanxi, China
  • Received:2018-11-15 Revised:2018-12-26 Online:2019-05-21 Published:2019-05-06

摘要: 吐哈WXS油藏经过24年注水开发,已经进入高含水阶段,注入水对储层的长期冲刷和浸泡导致储层敏感性发生变化。通过X射线衍射、全岩定量分析、高压压汞实验、扫描电镜等方法,在分析目标储层长期注水前后岩石矿物成分和黏土组成、渗透率和孔隙结构等变化的基础上,针对水淹层岩心和油层岩心分别进行储层敏感性评价实验。结果表明,长期注水冲刷容易造成目标储层黏土矿物含量下降,增强储层的非均质性,进而导致储层在长期水驱后敏感性发生不同程度的变化,其变化幅度与敏感类型及储层所属层位的不同而出现差异。在后期注水及储层改造中应针对不同部位储层的敏感性进行相应的调整,以改善油田开发效果。

关键词: 水驱, 孔隙结构, 储层敏感性, 黏土组成, 伤害程度

Abstract: After decades of waterflooding, WXS reservoir of Tuha Oilfield has entered a high water cut stage. The mineral composition and clay composition, and pore structure of the reservoir have been changed by longterm washing and soaking of the injected water, which causes the change of reservoir sensitivity. On the basis of analyzing the changes of rock mineral composition, clay composition, permeability and pore structure before and after long-term water injection by using test methods of X-ray diffraction, full rock quantitative analysis, core mercury intrusion, scanning electron microscope (SEM), reservoir sensitivity evaluation experiments were carried out for the cores of water-flooded layer and the cores of oil layer respectively. The results show that longterm water flooding can easily cause the decrease of clay mineral content and enhance the reservoir heterogeneity. After long-term water flooding, the reservoir sensitivity varies in different degrees, and the variation range varies with the sensitivity types and the layers. The later stage of water injection and reservoir reconstruction should be adjusted according to the different reservoir sensitivity of different layers to improve the development effect of oilfields.

Key words: water flooding, pore structure, reservoir sensitivity, clay composition, damage degree

中图分类号: 

  • TE343
[1] 宫清顺, 寿建峰, 姜忠朋, 等.准噶尔盆地乌尔禾油田三叠系百口泉组储层敏感性评价.石油与天然气地质, 2012, 33(2):307-310. GONG Q S, SHOU J F, JIANG Z P, et al. Reservoir sensitivity evaluation of the Triassic Baikouquan Formation in Wuerhe Oilfield, Junggar Basin. Oil & Gas Geology, 2012, 33(2):307-310.
[2] 张玄奇.储层敏感性的灰色评价.大庆石油地质与开发, 2004, 23(6):60-62. ZHANG X Q. Gray evaluation of reservoir sensitivity. Petroleum Geology & Oilfield Development in Daqing, 2004, 23(6):60-62.
[3] 李云, 祁利祺, 胡作维, 等.准噶尔盆地阜东斜坡中侏罗统头屯河组储层敏感性特征.岩性油气藏, 2014, 26(1):52-56. LI Y, QI L Q, HU Z W, et al. Reservoir sensitivity of middle Jurassic Toutunhe Formation in Fudong slope, Junggar Basin. Lithologic Reservoirs, 2014, 26(1):52-56.
[4] LIU Y H, HOU M Q, YANG G Y, et al. Solubility of CO2 in aqueous solutions of NaCl,KCl,CaCl2 and their mixed salts at different temperatures and pressures. Journal of Supercritical Fluids, 2011, 56(2):125-129.
[5] 于兴河.油气储层地质学基础.北京:石油工业出版社, 2009. YU X H. Basis of hydrocarbon reservoir geology. Beijing:Petroleum Industry Press, 2009.
[6] 郑荣才.辽河盆地下第三系砂岩储层的敏感性研究.矿物岩石, 1997, 18(1):77-84. ZHENG R C. Sensitive of sandstones reservoir in Paleogene from Liaohe Basin. Journal of Mineralogy Petrology, 1997, 18(1):77-84.
[7] 李海涛, 李颖, 李亚辉, 等.低盐度注水提高碳酸盐岩油藏采收率.岩性油气藏, 2016, 28(2):119-124. LI H T, LI Y, LI Y H, et al. Low salinity waterflooding to enhance oil recovery of carbonate reservoirs. Lithologic Reservoirs, 2016, 28(2):119-124.
[8] 常学军, 尹志军.高尚堡沙三段油藏储层敏感性实验研究及其形成机理.石油实验地质, 2004, 26(1):84-88. CHANG X J, YIN Z J. Sensitivity experimental study and its mechanism analysis of reservoir in the third member of the Shahejie Formation,Gaoshangpu oilfield. Experimental Petroleum Geology, 2004, 26(1):84-88.
[9] 何永宏.鄂尔多斯盆地姬塬油田长8储层敏感性研究.断块油气田, 2014, 21(1):87-91. HE Y H. Research on sensitivity of Chang 8 reservoir of Jiyuan Oilfield in Ordos Basin. Fault-Block Oil & Gas Field, 2014, 21(1):87-91.
[10] 李武广, 杨胜来, 邵先杰, 等.注水油田开发指标优选体系与方法研究.岩性油气藏, 2011, 23(6):110-117. LI W G, YANG S L, SHAO X J, et al. Index system optimization and methods of water flood field development. Lithologic Reservoirs, 2011, 23(6):110-117.
[11] 中国石油化工股份有限公司胜利油田分公司地质科学研究院.SY/T 5358-2012储层敏感性流动实验评价方法. 北京:石油工业出版社, 2012. Geological Science Research Institute of Shengli Oilfield Company, SINOPEC. SY/T 5358-2012 Formation damage evaluation by flow test of Oil and Gas. Beijing:Petroleum Industry Press, 2012.
[12] 成赛男, 田继军, 张鹏辉.伊通盆地莫里青断陷西北缘双阳组二段储层敏感性流动实验评价.油气地质与采收率, 2013, 20(3):76-80. CHENG S N, TIAN J J, ZHANG P H. Study on flow test evaluation of reservoir sensitivity in second member of Shuangyang Formation, northwest edge of Moliqing fault depression,Yitong Basin. Petroleum Geology and Recovery Efficiency, 2013, 20(3):76-80.
[13] 任大忠, 张晖, 周然, 等.塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究.岩性油气藏, 2018, 30(6):27-36. REN D Z, ZHANG H, ZHOU R, et al. Sensitivity of tight sandstone reservoir of Bashijiqike Formation in Keshen area,Tarim Basin. Lithologic Reservoirs, 2018, 30(6):27-36.
[14] 胡伟, 吕成远, 王锐, 等.水驱装CO2 混相驱渗流机理及传质特征.石油学报, 2018, 39(2):201-206. HU W, LYU C Y, WANG R, et al. Porous flow mechanisms and mass transfer characteristics of CO2 miscible flooding after water flooding. Acta Petrolei Sinica, 2018, 39(2):201-206.
[15] 尚婷, 韩小琴, 乔向阳, 等.鄂尔多斯盆地子长地区盒8段储层敏感性研究.石油地质与工程, 2015, 29(2):101-105. SHANG T, HAN X Q, QIAO X Y, et al. Reservoir sensitivity study of He 8 reservoir from Zichang area in Ordos Basin. Petroleum Geology and Engineering, 2015, 29(2):101-105.
[16] 吴胜和, 熊琦华. 油气储层地质学. 北京:石油工业出版社, 1998:122-168. WU S H, XIONG Q H. Oil and gas reservoir geology. Beijing:Petroleum Industry Press, 1998:122-168.
[17] SUN Q, TIAN H, LI Z Z, et al. Solubility of CO2 in water and NaCl solution in equilibrium with hydrate. Part I:Experimental measurement. Fluid Phase Equilibria, 2016, 409(15):131-135.
[18] 章雄冬, 朱玉双, 曹海虹, 等.苏北盆地草舍油田泰州组储层水敏伤害及其对注水开发的影响.石油与天然气地质, 2010, 31(4):504-510. ZHANG X D, ZHU Y S, CAO H H, et al. Water sensitive damage and its impacts on the waterflood development of the Taizhou Formation reservoir in Caoshe oilfield,the Subei Basin. Oil & Gas Geology, 2010, 31(4):504-510.
[19] 贾统权.黏土矿物与油藏演化的对应关系对储层敏感性的影响.油气地质与采收率, 2007, 14(5):12-15. JIA T Q. The influence of relationship between clay mineral and evolution reservoir on reservoir sensibility. Petroleum Geology and Recovery Efficiency, 2007, 14(5):12-15.
[20] 张昭槐, 罗平亚. 保护储集层技术. 北京:石油工业出版社, 1993:1-45. ZHANG Z H, LUO P Y. Reservoir protection technology. Beijing:Petroleum Industry Press, 1993:1-45.
[21] 徐会林, 王新海, 魏少波, 等.四川盆地高石梯-磨溪区块震旦系储层敏感性实验评价.岩性油气藏, 2015, 27(2):13-19. XU H L, WANG X H, WEI S B, et al. Evaluation of reservoir sensitivity of Sinian in Gaoshiti-Moxi block,Sichuan Basin. Lithologic Reservoirs, 2015, 27(2):13-19.
[22] 徐赢, 潘有军, 周荣萍, 等.油田注水开发期含水率随时间变化规律研究.岩性油气藏, 2016, 28(4):127-133. XU Y, PAN Y J, ZHOU R P, et al. Water cut change law with time in waterflooding oilfield. Lithologic Reservoirs, 2016, 28(4):127-133.
[1] 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176.
[2] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[3] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[4] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[5] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[6] 陈明江, 程亮, 陆涛. Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响[J]. 岩性油气藏, 2020, 32(3): 133-143.
[7] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[8] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[9] 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134.
[10] 宋明明, 韩淑乔, 董云鹏, 陈江, 万涛. 致密砂岩储层微观水驱油效率及其主控因素[J]. 岩性油气藏, 2020, 32(1): 135-143.
[11] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[12] 贾红兵, 赵辉, 包志晶, 赵光杰, 毛伟, 李亚光. 水驱开发效果评价新方法及其矿场应用[J]. 岩性油气藏, 2019, 31(5): 101-107.
[13] 张志刚, 刘春杨, 刘国志. 低渗透油田储层连通关系动静态综合评价方法[J]. 岩性油气藏, 2019, 31(5): 108-113.
[14] 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133.
[15] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .