岩性油气藏 ›› 2020, Vol. 32 ›› Issue (3): 159165.doi: 10.12108/yxyqc.20200315
钱真1, 李辉2, 乔林3, 柏森1
QIAN Zhen1, LI Hui2, QIAO Lin3, BAI Sen1
摘要: 碳酸盐岩油藏低矿化度水驱应用潜力巨大,为了更好地推广其矿场应用而针对性开展作用机理的实验研究。首先,岩心驱替实验研究注入水矿化度和关键离子组成对采收率的影响;而后,润湿角测定实验分析注入水矿化度和关键离子组成对碳酸盐岩表面润湿性的影响;最终,根据实验结果建立碳酸盐岩油藏低矿化度水驱作用机理。研究发现:低矿化度水驱能有效改变碳酸盐岩表面润湿性进而提高油藏采收率,存在最优矿化度使得碳酸盐岩表面润湿性变化最大、采收率最高;Mg2+和SO42-对碳酸盐岩表面润湿性和原油采收率的影响效果不同;随着溶液中Mg2+浓度升高,碳酸盐岩表面润湿性变化不断增强、原油采收率不断升高;随着溶液中SO42-浓度增加,碳酸盐岩表面润湿性变化先增强后减弱、原油采收率先增加后稳定。碳酸盐岩油藏低矿化度水驱作用机理在于润湿性的改变:①SO42-吸附在正电性的碳酸盐岩矿物表面,中和表面电荷,促进了Mg2+向矿物表面运动;②Mg2+与碳酸盐岩矿物表面的Ca2+发生取代反应,造成原油组分的解离。
中图分类号:
[1] 刘文汇.中国早古生代海相碳酸盐岩层系油气地质研究进展.矿物岩石地球化学通报,2019,38(5):871-879. LIU W H. Advances in oil and gas geology of the Early Paleozoic marine carbonate strata in China. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(5):871-879. [2] 任文博.流势调控在缝洞型碳酸盐岩油藏控水稳油中的应用.岩性油气藏,2019,31(6):127-134. REN W B. Application of flow potential control in water control and oil stabilization of fractured-vuggy carbonate reservoirs. Lithologic Reservoirs,2019,31(6):127-134. [3] 焦方正.塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识.石油勘探与开发,2019,46(3):552-558. JIAO F Z. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China. Petroleum Exploration and Development,2019,46(3):552-558. [4] 程飞.缝洞型碳酸盐岩油藏储层类型动静态识别方法:以塔里木盆地奥陶系为例.岩性油气藏,2017,29(3):76-82. CHENG F. Integrated dynamic and static identification method of fractured-vuggy carbonate reservoirs:a case from the Ordovician in Tarim Basin. Lithologic Reservoirs,2017,29(3):76-82. [5] 陈晨,董朝霞,高玉莹,等.盐水组成对极性组分在石英表面吸附的影响.石油学报,2017,38(2):217-226. CHEN C,DONG Z X,GAO Y Y,et al. Effects of brine composition on quartz surface adsorption of polar components. Acta Petrolei Sinica,2017,38(2):217-226. [6] BARTELS W B,MAHANIB H,BERGB S,et al. Literature review of low salinity waterflooding from a length and time scale perspective. Fuel,2019,236:338-353. [7] 李海涛,李颖,李亚辉,等.低矿化度注水提高碳酸盐岩油藏采收率.岩性油气藏,2016,28(2):119-126. LI H T,LI Y,LI Y H,et al. Low salinity waterflooding to enhance oil recovery of carbonate reservoirs. Lithologic Reservoirs,2016, 28(2):119-126. [8] HAO J S,MOHAMMADKHANI S,SHAHVERDI H,et al. Mechanisms of smart waterflooding in carbonate oil reservoirs:a review. Journal of Petroleum Science and Engineering,2019, 179:276-291. [9] 王平,姜瑞忠,王公昌,等.低矿化度水驱研究进展及展望.岩性油气藏,2012,24(2):106-109. WANG P,JIANG R Z,WANG G C,et al. Research advance and prospect of low salinity water flooding. Lithologic Reservoirs, 2012,24(2):106-109. [10] 彭颖锋,李宜强,朱光亚,等.离子匹配水驱提高碳酸盐岩油藏采收率机理及实验:以中东哈法亚油田白垩系灰岩为例.石油勘探与开发,2019,46(6):1-10. PENG Y F,LI Y Q,ZHU G Y,et al. Mechanisms and experimental research on ion-matched waterflooding to enhance oil recovery in carbonate reservoirs:a case of chalk reservoir in Halfaya Oilfield,Middle East. Petroleum Exploration and Development, 2019,46(6):1-10. [11] YUTKIN M P,LEE J Y,MISHRA H,et al. Bulk and surface aqueous speciation of calcite:Implications for low-salinity waterflooding of carbonate reservoirs. SPE 182829,2016. [12] AHMADI A,MOOSAVI M. Investigation of the effects of lowsalinity waterflooding for improved oil recovery in carbonate reservoir cores. Energy Sources,Part A:Recovery,Utilization, and Environmental Effects,2018,40(9):1035-1043. [13] KAROUSSI O,HAMOUDA A A. Macroscopic and nanoscale study of wettability alteration of oil-wet calcite surface in presence of magnesium and sulfate ions. Journal of Colloid and Interface Science,2008,317:26-36. [14] POURYOUSEFY E,XIE Q,SAEEDI A. Effect of multi-component ions exchange on low salinity EOR:Coupled geochemical simulation study. Petroleum,2016,2:215-224. [15] 杨燕,雷天柱,关宝文,等.滨浅湖相泥质烃源岩中不同赋存状态可溶有机质差异性研究.岩性油气藏,2015,27(2):77-81. YANG Y,LEI T Z,GUAN B W,et al. Differences of solvable organic matters with different occurrence states in argillaceous source rocks of coastal shallow-lake facie. Lithologic Reservoirs, 2015,27(2):77-81. [16] XIAO R,GUPTA R,GLOTZBACH R C,et al. Evaluation of lowsalinity water-flooding in Middle East carbonate reservoirs using a novel,field-representative core-flood method. Journal of Petroleum Science and Engineering,2018,163:683-690. [17] KHISHVAND M,KOHSHOUR I O,ALIZADEH A H,et al. A multi-scale experimental study of crude oil-brine-rock interactions and wettability alteration during low-salinity waterflooding. Fuel,2019,250:117-131. [18] FREDRIKSEN S B,ROGNMO A U,FERNØ M A. Pore-scale mechanisms during low salinity waterflooding:Oil mobilization by diffusion and osmosis. Journal of Petroleum Science and Engineering,2018,163:650-660. [19] MOHAMMADI M,MAHANI H. Direct insights into the porescale mechanism of low-salinity waterflooding in carbonates using a novel calcite microfluidic chip. Fuel,2020,260:116374. [20] 林梅钦,华朝,李明远.利用盐水调节油藏岩石表面润湿性.石油勘探与开发,2018,45(1):136-144. LIN M Q,HUA C,LI M Y. Surface wettability control of reservoir rocks by brine. Petroleum Exploration and Development, 2018,45(1):136-144. [21] LIU X Y,FEILBERG K L,YAN W,et al. Interactions between a polar,basic and acidic model oils and a calcite surface. Journal of Dispersion Science and Technology,2019,40(11):1611-1617. [22] 柴汝宽,刘月田,杨莉,等.乙酸在方解石表面吸附的密度泛函研究.中南大学学报(自然科学版),2019,50(5):1252-1262. CHAI R K,LIU Y T,YANG L,et al. Density functional theory analysis of acetic acid adsorption on CaCO3(104) surface. Journal of Central South University (Science and Technology), 2019,50(5):1252-1262. [23] ATAMAN E,ANDERSSON M P,CECCATO M,et al. Functional group adsorption on calcite:I. oxygen containing and nonpolar organic molecules. Journal of Physical Chemistry C, 2016,120(30):16586-16596. |
[1] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[2] | 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188. |
[3] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[4] | 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177. |
[5] | 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171. |
[6] | 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176. |
[7] | 杨美华, 钟海全, 李颖川. 缝洞型碳酸盐岩油藏新型油藏生产指示曲线[J]. 岩性油气藏, 2021, 33(2): 163-170. |
[8] | 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142. |
[9] | 任文博. 流势调控在缝洞型碳酸盐岩油藏控水稳油中的应用[J]. 岩性油气藏, 2019, 31(6): 127-134. |
[10] | 孙亮, 李勇, 杨菁, 李保柱. 薄层底水碳酸盐岩油藏水平井含水上升模式及优化注水技术[J]. 岩性油气藏, 2019, 31(6): 135-144. |
[11] | 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133. |
[12] | 韩培慧, 闫坤, 曹瑞波, 高淑玲, 佟卉. 聚驱后油层提高采收率驱油方法[J]. 岩性油气藏, 2019, 31(2): 143-150. |
[13] | 景紫岩, 张佳, 李国斌, 竺彪, 韩国庆, 刘双双. 泡沫混排携砂解堵机理及影响因素[J]. 岩性油气藏, 2018, 30(5): 154-160. |
[14] | 杨红, 王宏, 南宇峰, 屈亚宁, 梁凯强, 江绍静. 油藏CO2驱油提高采收率适宜性评价[J]. 岩性油气藏, 2017, 29(3): 140-146. |
[15] | 刘晨, 王凯, 王业飞, 周文胜. 针对A油田的抗温、抗盐聚合物/表面活性剂二元复合驱油体系研究[J]. 岩性油气藏, 2017, 29(3): 152-158. |
|