岩性油气藏 ›› 2018, Vol. 30 ›› Issue (5): 154–160.doi: 10.12108/yxyqc.20180519

• 石油工程 • 上一篇    下一篇

泡沫混排携砂解堵机理及影响因素

景紫岩1, 张佳2, 李国斌1, 竺彪3, 韩国庆2, 刘双双4   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 中国石油大学(北京)石油与天然气学院, 北京 102249;
    3. 中海油田服务股份有限公司 生产事业部, 天津 300450;
    4. 斯伦贝谢(北京)技术公司, 北京 100084
  • 收稿日期:2018-03-20 修回日期:2018-05-19 出版日期:2018-09-14 发布日期:2018-09-14
  • 第一作者:景紫岩(1988-),男,硕士,工程师,主要从事开发地质及油藏工程等方面的研究工作。地址:(730020))甘肃省兰州市城关区雁儿湾路535号。Email:jingziyan@petrochina.com.cn。
  • 基金资助:
    国家重大科技专项“渤海油田泡沫混排增产工艺研究”(编号:2011ZX05014-004)资助

Mechanism and influencing factors of foam mixed flowback of sand production

JING Ziyan1, ZHANG Jia2, LI Guobin1, ZHU Biao3, HAN Guoqing2, LIU Shuangshuang4   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China;
    3. Production Optimization, China Oilfield Services Limited., Tianjin 300450, China;
    4. Schlumberger(Beijing), Beijing 100084, China
  • Received:2018-03-20 Revised:2018-05-19 Online:2018-09-14 Published:2018-09-14

摘要: 随着油田采出程度的提高,油藏近井地带堵塞问题愈加突出,为了消除堵塞、增强近井地带流通能力,提高采收率则成为高效开发的关键问题。根据泡沫混排技术的特点,在对其机理进行深入研究的基础上,设计泡沫混排携砂模拟实验,并对泡沫混排携砂影响因素进行分析。结果表明:气液比、裂缝、孔隙度、放喷压差是影响泡沫携砂能力及细粉砂排出的主要因素。该研究成果可为完善泡沫混排理论模型和实际施工提供很好的理论及技术指导,有助于提高油田单井采收率。

关键词: 泡沫混排, 机理研究, 模拟实验, 影响因素, 采收率

Abstract: With the increase of oil recovery,wellbore blockage in sandstone reservoir is becoming more and more serious. How to remove blockage and increase output has become a key issue of efficient development. From the angle of improving the permeability of oil layer to improve the production,many countries have generally adopted the methods of oil layer acidification and hydraulic fracturing to increase the oil recovery rate,but it also brings many negative problems,such as reservoir damage. Based on the mechanism of foam temporary support,state equation was used to deduce the change equation of formation pressure under the condition of foam compressibility,and study the influence of the main formation conditions and construction parameters under the condition of foam compressi-bility by combining the physical simulation experiment. The results show that gas liquid ratio, fracture,porosity and pressure drop are the main factors that affect the sand carrying capacity and the discharge of fine sand. This study can provide a theoretical and technical guidance for improving foam mixed flowback theoretical model and practical construction,and can help to improve single well recovery.

Key words: foam mixed flowback, mechanism research, simulation experiment, influencing factors, recovery ratio

中图分类号: 

  • TE358.1
[1] 张保康,徐国瑞,铁磊磊,等. "堵水+调剖"工艺参数优化和油藏适应性评价——以渤海SZ36-1油田为例. 岩性油气藏, 2017,29(5):155-161. ZHANG B K,XU G R,TIE L L,et al. Optimization of technological parameters and evaluation of reservoir adaptation by water plugging and profile control:a case from Bohai SZ36-1 oilfield. Lithologic Reservoirs,2017,29(5):155-161.
[2] 杨红,王宏. 油藏CO2驱提高采收率适宜性评价. 岩性油气藏,2017,29(3):140-146. YANG H,WANG H. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs,2017,29(3):140-146.
[3] PRICE B P,GOTHARD B. Foam assisted lift-importance of selection and application. SPE 106465,2007.
[4] YANG J,SIDDIQUI S. The use of foam to improve liquid lifting from low-pressure gas wells. Technical Meeting/Petroleum Conference of The South Saskatchewan Section,Regina Petroleum Society of Canada,1999.
[5] 崔桂胜,田延喜,樊娜. 泡沫混排解堵技术在孤北21区块的研究和应用.内江科技,2013(1):101-102. CUI G S,TIAN Y X,FAN N. Research and application of foam mixing and plugging technology in Gubei 21 block. Neijiang Science and Technology,2013(1):101-102.
[6] 曹小朋. 泡沫混排解堵的理论研究及应用.北京:中国石油大学(北京),2008. CAO X P. Theoretical study and application of foam plug removal technology. Beijing:China University of Petroleum(Beijing),2008.
[7] 李兆敏,王冠华,曹小朋.泡沫混排解堵技术研究与应用.西南石油大学学报(自然科学版),2010,32(2):178-181. LI Z M,WANG G H,CAO X P. Research and application of foam mixing and plugging technology. Journal of Southwest Petroleum University(Science & Technology Edition),2010,32(2):178-181.
[8] 王飞,李兆敏,李松岩,等.泡沫混排解堵数学模型及数值模拟.计算物理,2015,32(1):58-64. WANG F,LI Z M,LI S Y,et al. Mathematical model and numerical simulation of foam plug removal. Chinese Journal of Computational Physics,2015,32(1):58-64.
[9] EVREN M,OZBAYOGLU,STEFAN Z,et al. Cuttings transport with foam in horizontal & highly-inclined wellbores,SPE 79856,2003.
[10] 杨肖曦,李松岩,林日亿,等. 泡沫流体携砂能力的数值模拟. 中国石油大学学报(自然科学版),2006,30(3):89-92. YANG X X,LI S Y,LIN R Y,et a1.Numerical simulation for prop-carrying capacity of foam fluid. Journal of Southwest Petroleum University(Science & Technology Edition),2006,30(3):89-92.
[11] 李兆敏,李松岩,尚朝辉,等. 流速和环空偏心对泡沫携砂能力的影响数值模拟. 石油钻采工艺,2007,29(3):97-100. LI Z M,LI S Y,SHANG Z H,et al. Numerical simulation of the influence of velocity and annular eccentricity on the sand carrying capacity of foam. Oil Drilling & Production Technology,2007,29(3):97-100.
[12] 孙茂盛. 泡沫流体冲砂洗井数值模拟研究及应用.北京:中国石油大学(北京),2007. SUN M S. Study on horizontal well sand-flushing with foam fluid. Beijing:China University of Petroleum(Beijing),2007.
[13] SAINTPERE S,MARCILAT Y,BRUNI F,et al. Hole cleaning capabilities of drilling foams compared to conventional fluids. SPE 63049,2000.
[14] MARTINS A L,LOURENCO A M F. Foam property requirements for proper hole cleaning while drilling horizontal wells in underbalanced conditions. SPE 64382,2001.
[15] 范学平,徐向荣. 地应力对岩心渗透率伤害实验及机理分析. 石油勘探与开发,2002,29(2):117-119. FAN X P,XU X R. Experimental and mechanism research about permeability damage with the change of stress. Petroleum Exploration and Development,2002,29(2):117-119.
[16] OZBAYOGLU M E,KURU E,MISKA S Z,et al. Cuttings transport with foam in horizontal and highly inclined wellbores. SPE 79856,2003.
[17] 梅海燕,张茂林,任敏红,等.气驱起泡剂综合性能评价. 断块油气田,2006,13(1):26-28. MEI H Y,ZHANG M L,REN M H,et al. Comprehensive performance evaluation of gas drive foaming agent. Fault-Block Oil & Gas Field,2006,13(1):26-28.
[18] 郑力军,张涛,王兴宏,等.氮气泡沫驱油用起泡剂的筛选与评价.石油与天然气化工,2011,40(6):607-609. ZHENG L J,ZHANG T,WANG X H,et al. Screening and evaluation of foaming agent for nitrogen foam flooding. Chemical Engineering of Oil & Gas,2011,40(6):607-609.
[19] 杜立智,蔡玲玲,郑建辉,等.用混排工艺清洗注水管网.油气田地面工程,2011,30(1):60-61. DU L Z,CAI L L,ZHENG J H,et al. Cleaning water injection pipe network by mixing process. Oil-Gas Field Surface Engineering,2011,30(1):60-61.
[20] 皮彦夫.石英砂环氧树脂胶结人造岩心的技术与应用.科学技术与工程,2010,10(28):6998-7000. PI Y F. Technology and application of making artificial cores by the cementation of quartzite and colophony. Science Technology and Engineering,2010,10(28):6998-7000.
[21] 尹遵素. 人造砂岩的制备(一种环氧树脂方法)及其物理性质.江汉石油译丛,1990,18(1):15-18. YIN Z S. The manufacture(epoxy method) and physical properties of artificial rock sample. Jianghan Petroleum Renditions, 1990,18(1):15-18.
[22] 卢祥国,高振环,闫文华. 人造岩心渗透率影响因素试验研究.大庆石油地质与开发,1994,13(4):53-55. LU X G,GAO Z H,YAN W H. Study on the development of man-made core and the influencing factors of permeability. Petroleum Geology and development in Daqing,1994,13(4):53-55.
[23] 李芳芳,杨胜来,高旺来,等.大尺寸石英砂环氧树脂胶结人造岩心制备技术研究及应用.科学技术与工程,2013,13(3):685-689. LI F F,YANG S L,GAO W L,et al. The manufacturing methods of large size heterogeneity artificial cores. Science Technology and Engineering,2013,13(3):685-689.
[24] 杨筱璧.泡沫排水起泡剂室内实验优选.特种油气藏,2009, 16(2):70-71. YANG X B. Indoor experiment optimization of foam drainage agent. Special oil and Gas Reservoirs,2009,16(2):70-71.
[25] 梁万林.人造岩心制备技术研究.石油仪器,2008,22(2):72-76. LIANG W L. Research on artificial core preparation technology. Petroleum Instruments,2008,22(2):72-76.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[3] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[4] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[5] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[6] 钱真, 毛志强, 郑伟, 黄远军, 陈立峰, 曾慧勇, 李岗, 宋嫒. 井间单套缝洞型油藏橡胶颗粒调剖堵水实验[J]. 岩性油气藏, 2023, 35(4): 161-168.
[7] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[8] 屈童, 高岗, 徐新德, 王瑞, 甘军, 梁刚, 游君君. 三角洲—浅海沉积体系泥质沉积规律模拟实验——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2022, 34(1): 24-33.
[9] 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
[10] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[11] 黄芸, 杨德相, 李玉帮, 胡明毅, 季汉成, 樊杰, 张晓芳, 王元杰. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 70-80.
[12] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[13] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[14] 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133.
[15] 刘秀婵, 陈西泮, 刘伟, 王霞. 致密砂岩油藏动态渗吸驱油效果影响因素及应用[J]. 岩性油气藏, 2019, 31(5): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .