岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 24–33.doi: 10.12108/yxyqc.20220103

• 油气地质 • 上一篇    下一篇

三角洲—浅海沉积体系泥质沉积规律模拟实验——以琼东南盆地崖南凹陷为例

屈童1,2, 高岗1,2, 徐新德3, 王瑞1,2, 甘军3, 梁刚3, 游君君3   

  1. 1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学(北京)地球科学学院, 北京 102249;
    3. 中海石油(中国)有限公司湛江分公司, 广东湛江 524057
  • 收稿日期:2021-06-25 修回日期:2021-09-18 发布日期:2022-01-21
  • 通讯作者: 高岗(1966—),男,教授,博士生导师,主要从事油气成藏与分布规律、资源评价等方面教学与研究工作。Email:gaogang2819@sina.com。 E-mail:gaogang2819@sina.com
  • 作者简介:屈童(1994-),男,中国石油大学(北京)在读博士研究生,研究方向为油气成藏与分布规律。地址:(102249)北京市昌平区府学路18号。Email:qutong1994@sina.com
  • 基金资助:
    中海油“十三五”油气资源评价项目(编号:YXKY-2018-KT-01),自然资源部项目“中海油矿权区油气资源评价”(编号:2017YQZYPJ0109)联合资助

Simulation experiment of argillaceous sedimentary law of delta-shallow sea sedimentary system: A case study of Yanan Sag, Qiongdongnan Basin

QU Tong1,2, GAO Gang1,2, XU Xinde3, WANG Rui1,2, GAN Jun3, LIANG Gang3, YOU Junjun3   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Zhanjiang Branch, CNOOC China Limited, Zhanjiang 524057, Guangdong, China
  • Received:2021-06-25 Revised:2021-09-18 Published:2022-01-21

摘要: 三角洲—浅海沉积体系由于同时具有陆源有机及海洋有机质备受众多学者的关注,近年来南海地区油气勘探实践表明崖城组陆源海相泥岩是油气生成的重要来源之一,但由于深水区烃源岩埋深较大、现有钻井较少,极大地限制了该地区烃源岩研究与勘探进展。为了对泥质沉积物沉积与分布规律进行研究,本文以琼东南盆地崖南凹陷崖城组地质背景为基础,设计沉积模拟实验,对沉积物沉积过程进行观察,并对沉积体进行取样,测定样品粒度组成,结合定性观察与定量对比,对三角洲—浅海沉积体系泥质沉积物的沉积规律进行探究,对陆源海相烃源岩的优势发育部位进行揭示。研究结果表明,由物源向浅海方向,沉积物的泥质含量呈整体增大的趋势,在三角洲前缘斜坡处由于水动力条件的骤降出现突增,但沉积物的总量呈先增大后减小的趋势,使得泥质沉积物的总量向深水方向呈减少趋势;三角洲前缘斜坡—浅海沉积范围是泥岩发育的优势区域,在三角洲沉积体内局部低地势、弱水动力条件的部位也可沉积并保存泥质沉积物;地形坡度的增大有利于泥质沉积物向深水区搬运。三角洲前缘—浅海区是泥质沉积物堆积的主要部位,即近海盆地的近岸地区,这对琼东南盆地深水区陆源海相烃源岩优势发育部位的预测提供了重要依据与指导。

关键词: 三角洲—浅海沉积体系, 陆源海相烃源岩, 泥质沉积物, 沉积模拟实验, 优势发育区, 琼东南盆地

Abstract: The delta-shallow sea sedimentary system has attracted the attention of many scholars due to its combination of terrestrial organic matter and marine organic matter. In recent years,oil and gas exploration practices in the South China Sea have shown that terrigenous marine mudstone of Yacheng Formation is one of the important sources of oil and gas generation. The source rocks are buried deep and there are few existing wells,which greatly limits the research and exploration progress of source rocks in this area. In order to study the deposition and distribution of argillaceous sediments,based on the geological background of Yacheng Formation in Yannan Sag, Qiongdongnan Basin,a sedimentary simulation experiment was designed to observe the sedimentary process,and the sedimentary bodies were sampled to determine the particle size composition of the samples. Combined with qualitative observation and quantitative comparison,the sedimentary law of argillaceous sediments in delta shallow sea sedimentary system was explored,and the dominant development position of terrestrial marine source rocks was revealed. The results show that from the provenance to the shallow sea,the argillaceous content of sediments increases as a whole. At the delta front slope,the argillaceous content increases suddenly due to the sudden drop of hydrodynamic conditions,but the total amount of the sediments increases first and then decreases,which makes the total amount of the argillaceous sediments decrease to the deep water. The delta front slope-shallow sea sedimentary area is the dominant area for the development of terrestrial marine source rocks,and argillaceous sediments can also be developed in the low-lying and weak hydrodynamic parts of the delta sedimentary body. The increase of terrain slope is conducive to the transportation of argillaceous sediments to the deep-water area. The delta frontshallow sea area is the main part of argillaceous sediment accumulation,that is,the nearshore area near the sea basin,which provides an important basis and guidance for the prediction of the dominant development parts of continental marine source rocks in the deep-water area of Qiongdongnan Basin.

Key words: delta-shallow sea sedimentary system, terrestrial marine source rock, argillaceous sediment, sedi mentary simulation experiment, dominant development area, Qiongdongnan Basin

中图分类号: 

  • TE122.2
[1] GALY V, FRANCE-LANORD C, LARTIGES B. Loading and fate of particulate organic carbon from the Himalaya to the GangaBrahmaputra delta. Geochimica et Cosmochimica Acta,2008, 72(7):1767-1787.
[2] TANOUE E, HANDA N. Differential sorption of organic matter by various sized sediment particles in recent sediment from the Bering Sea. Journal of Oceanography, 1979, 35(5):199-208.
[3] 傅强,李璟,邓秀琴,等. 沉积事件对深水沉积过程的影响:以鄂尔多斯盆地华庆地区长6油层组为例. 岩性油气藏, 2019, 31(1):20-29. FU Q, LI J, DENG X Q, et al. Influence of sedimentary events on deep water sedimentation process:A case of Chang 6 reservoir in Huaqing area, Ordos Basin. Lithologic Reservoirs, 2019, 31(1):20-29.
[4] RAMASWAMY V, BIRGIT G, SHIRODKAR P V, et al. Distribution and sources of organic carbon,nitrogen and their isotopic signatures in sediments from the Ayeyarwady(Irrawaddy)continental shelf,northern Andaman Sea. Marine Chemistry, 2008, 111(3/4):137-150.
[5] HU L M, SHI X F, BAI Y Z, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China. Journal of Marine Systems, 2016, 155:50-58.
[6] CHENU C,PLANTE A F. Clay-sized organo-mineral complexes in a cultivation chronosequence:Revisiting the concept of the "primary organo-mineral complex". European Journal of Soil Science, 2010, 57(4):596-607.
[7] 孙书文. 渤海及邻近海域表面沉积物中木质素的分布特征及其陆源有机质示踪意义. 青岛:中国海洋大学, 2012. SUN S W. Distribution characteristics of lignin in surface sediments of Bohai Sea and its adjacent waters and its significance for tracing terrigenous organic matter. Qingdao:Ocean University of China, 2012.
[8] 王华新, 线薇微. 长江口表层沉积物有机碳分布及其影响因素. 海洋科学, 2011, 35(5):24-31. WANG H X, XIAN W W. Distribution of the total organic carbon of surface sediment and its influence factors in the Yangtze River estuary. Marine Sciences, 2011, 35(5):24-31.
[9] 张凌. 珠江口及近海沉积有机质的分布、来源其早期成岩作用研究. 广州:中国科学院研究生院(广州地球化学研究所), 2006. ZHANG L. Distribution,source and early diagenesis of sedimentary organic matter in the Pearl River estuary and offshore. Guangzhou:Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2006.
[10] 刘忠保, 赖志云. 辫状河-扇三角洲形成及演变的水槽实验. 大庆石油地质与开发, 1994, 13(2):58-62. LIU Z B, LAI Z Y. A flume experiment on formation and evolution of braided stream-fan delta. Petroleum Geology & Oilfield Development in Daqing, 1994, 13(2):58-62.
[11] 王泽中, 汪崎生, 刘忠保. 含沙河流入湖后沙体形成, 发展的水槽实验. 石油与天然气地质, 1991, 12(4):426-438. WANG Z Z, WANG Q S, LIU Z B. Flume experiment on the formation and development of sand body after the sand bearing river flows into the lake. Oil & Gas Geology, 1991, 12(4):426-438.
[12] 魏康强,张元福,李媛,等. 利用水槽实验对不同流速下三角洲发育区别的探究. 复杂油气藏, 2017, 10(3):6-11. WEI K Q, ZHANG Y F, LI Y, et al. Study on difference of delta development under different flow velocities by flume experiment. Complex Hydrocarbon Reservoirs, 2017, 10(3):6-11.
[13] 吴时国, 袁圣强. 世界深水油气勘探进展与我国南海深水油气前景. 天然气地球科学, 2005, 16(6):693-699. WU S G, YUAN S Q. Advance of exploration and petroleum geological features of deep-water hydrocarbon in the world. Natural Gas Geoscience, 2005, 16(6):693-699.
[14] 王振峰, 李绪深, 孙志鹏, 等. 琼东南盆地深水区油气成藏条件和勘探潜力. 中国海上油气, 2011, 23(1):7-13. WANG Z F, LI X S, SUN Z P, et al. Hydrocarbon accumulation conditions and exploration potential in the deep-water region, Qiongdongnan Basin. China Offshore Oil and Gas, 2011, 23(1):7-13.
[15] 武爱俊, 徐建永, 滕彬彬, 等."动态物源" 精细刻画方法与应用:以琼东南盆地崖南凹陷为例. 岩性油气藏, 2017, 29(4):55-63. WU A J, XU J Y, TENG B B, et al. Fine description method of dynamic provenance and its application:A case from Yanan Sag, Qiongdongnan Basin. Lithologic Reservoirs, 2017, 29(4):55-63.
[16] 卢骏, 刘震, 张功成, 等. 南海北部小型海陆过渡相断陷地震相分析及沉积充填演化史研究:以琼东南盆地崖南凹陷崖城组为例. 海洋地质前沿, 2011, 27(7):13-22. LU J, LIU Z, ZHANG G C, et al. Seismic facies analysis and filling history reconstruction of small faulted depressions in northern South China Sea:A historical case on Yacheng Formation in Yanan Depression of the Qiongdongnan Basin. Marine Geology Frontiers, 2011, 27(7):13-22.
[17] 黄合庭, 黄保家, 黄义文, 等. 南海西部深水区大气田凝析油成因与油气成藏机制:以琼东南盆地陵水17-2气田为例. 石油勘探与开发, 2017, 44(3):380-388. HUANG H T, HUANG B J, HUANG Y W, et al. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea:A case study of Lingshui 17-2 gas field in Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 2017, 44(3):380-388.
[18] 孔敏. 琼东南盆地油气运移动力特征分析. 武汉:中国地质大学,2010. KONG M. Characteristics of oil and gas migration in Qiongdongnan Basin. Wuhan:China University of Geosciences, 2010.
[19] 毛雪莲, 朱继田, 姚哲, 等. 琼东南盆地深水区中央峡谷砂体成因与展布规律. 岩性油气藏, 2017, 29(6):60-68. MAO X L, ZHU J T, YAO Z, et al. Sandbody genesis and distribution regularity of central canyon in deepwater area of Qiongdongnan Basin. Lithologic Reservoirs, 2017, 29(6):60-68.
[20] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相. 岩性油气藏, 2017, 29(5):46-54. CAI J. Sedimentary facies of Neogene Sanya Formation in Changchang Sag, Qiongdongnan Basin. Lithologic Reservoirs, 2017, 29(5):46-54.
[21] 邵磊, 李昂, 吴国瑄, 等. 琼东南盆地沉积环境及物源演变特征. 石油学报, 2010, 31(4):548-552. SHAO L, LI A, WU G X, et al. Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the northern South China Sea. Acta Petrolei Sinica, 2010, 31(4):548-552.
[22] 刘传联. 琼东南盆地渐新统烃源岩微观沉积特征与沉积环境. 石油学报, 2010, 31(4):573-578. LIU C L. Sedimentary environment and micro-sediment characteristics of Oligocene source rocks in Qiongdongnan Basin. Acta Petrolei Sinica, 2010, 31(4):573-578.
[23] 廖静. 琼东南盆地崖南凹陷有利勘探区研究. 内江科技, 2013, 34(5):43-44. LIAO J. Study on favorable exploration area of Yanan Sag in Qiongdongnan Basin. Neijiang Technology, 2013, 34(5):43-44.
[24] 尚鲁宁, 吕大炜, 李增学, 等. 琼东南盆地崖南凹陷崖城组辫状河三角洲沉积特征及油气地质意义. 油气地质与采收率, 2013, 20(5):4-9. SHANG L N, LYU D W, LI Z X, et al. Sedimentary characteristics and petroleum geological significance of braided river delta of Yacheng Formation in Yanan Sag, Qiongdongnan Basin. Petroleum Geology and Recovery Efficiency, 2013, 20(5):4-9.
[25] 李莹, 张功成, 吕大炜, 等. 琼东南盆地崖城组沉积特征及成煤环境. 煤田地质与勘探, 2011, 39(1):1-5. LI Y, ZHANG G C, LYU D W,et al. Depositional characteristics and coal forming environment of Yacheng Formation, Qiongdongnan Basin. Coal Geology & Exploration, 2011, 39(1):1-5.
[26] 杜同军. 琼东南盆地层序地层和深水区沉积充填特征.青岛:中国海洋大学, 2013. DU T J. Sequence stratigraphy and sedimentary filling characteristics of deep water area in Qiongdongnan Basin. Qingdao:Ocean University of China, 2013.
[27] 尚飞. 鄂尔多斯盆地盒8期沉积模拟实验研究. 荆州:长江大学, 2012. SHANG F. Sedimentary simulation experiment of He 8 period in Ordos Basin. Jingzhou:Yangtze University, 2012.
[28] 周迅, 刘林, 叶永红. 南通市沿江地区潜水稀土元素地球化学特征及其指示意义. 地质科技情报, 2018, 37(3):210-218. ZHOU X, LIU L, YE Y H. Contents and distribution pattern of rare earth elements in phreatic water from Nantong area along the Yangtze River and their hydrochemical indication significance. Bulletin of Geological Science and Technology, 2018, 37(3):210-218.
[1] 毛雪莲, 朱继田, 姚哲, 徐守立, 唐历山. 琼东南盆地深水区中央峡谷砂体成因与展布规律[J]. 岩性油气藏, 2017, 29(6): 60-68.
[2] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46-54.
[3] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
[4] 刘 畅,苏 龙,关宝文,郑有伟,常 江,郑建京 . 茂名油页岩生烃演化特征及热解动力学—— — 以琼东南盆地地质模型为例[J]. 岩性油气藏, 2014, 26(6): 89-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[2] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[3] 罗月明,李志明,蒋宏,施伟军,梁海军. 准噶尔盆地沙窝地下侏罗统三工河组储层特征[J]. 岩性油气藏, 2008, 20(3): 27 -33 .
[4] 韩雪芳,朱筱敏,董艳蕾. 辽东湾锦州25-1 南潜山变质岩储层四性特征研究[J]. 岩性油气藏, 2009, 21(3): 90 -93 .
[5] 苏玉平,李建,刘亚峰,韦建波,邓兆元. 贝尔凹陷布达特群潜山分类及其演化史研究[J]. 岩性油气藏, 2009, 21(4): 58 -62 .
[6] 夏为卫,王新海,雷娟青. 低渗透油藏注二氧化碳气体的井网优选研究———以松辽盆地南部H油田L油藏为例[J]. 岩性油气藏, 2009, 21(4): 105 -107 .
[7] 胡明卿,刘少锋. 高柳地区东营组岩性地层油藏层序约束储层预测[J]. 岩性油气藏, 2010, 22(1): 104 -108 .
[8] 邱红兵. 曙光油田13938 潜山油藏剩余油挖潜效果评价[J]. 岩性油气藏, 2010, 22(1): 129 -133 .
[9] 易超,丁晓琪,葛鹏莉,郭佳. 利用测井资料对镇泾油田长8 油藏进行产能预测[J]. 岩性油气藏, 2010, 22(4): 104 -108 .
[10] 李南星,刘林玉,郑锐,卢德根,朱钰卿,孙运彬. 鄂尔多斯盆地镇泾地区超低渗透储层评价[J]. 岩性油气藏, 2011, 23(2): 41 -45 .